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CHAPTER
ONE

1. INTRODUCTION

This is a (still very small) collection of case studies of spatial data analyis with R.

It is part of these Introduction to Spatial Data Analysis with R resources.



http://www.rspatial.org/terra
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CHAPTER
TWO

2. THE LENGTH OF A COASTLINE

How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension is the title of a famous paper
by Benoit Mandelbrot. Mandelbrot uses data from a paper by Lewis Fry Richardson who showed that the length of
a coastline changes with scale, or, more precisely, with the length (resolution) of the measuring stick (ruler) used.
Mandelbrot discusses the fractal dimension D of such lines. D is 1 for a straight line, and higher for more wrinkled
shapes. For the west coast of Britain, Mandelbrot reports that D=1.25. Here I show how to measure the length of a
coast line with rulers of different length and how to compute a fractal dimension.

First we get a high spatial resolution (30 m) coastline for the United Kingdom from the GADM database.

library(terra)

## terra 1.7.62
library(geodata)

w <- world(path=".", resolution = 3)
uk <- w[w$GID_0=="GBR", ]

plot (uk)



https://classes.soe.ucsc.edu/ams214/Winter09/foundingpapers/Mandelbrot1967.pdf
https://en.wikipedia.org/wiki/Benoit_Mandelbrot
https://en.wikipedia.org/wiki/Lewis_Fry_Richardson
http://www.gadm.org
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This is a single “multi-polygon” (it has a single geometry) and a longitude/latitude coordinate reference system.

as.data.frame (uk)
## GID_0 NAME_G®
## 1 GBR United Kingdom

Let’s transform this to a planar coordinate system. That is not required, but it will speed up computations. We used the
British National Grid coordinate reference system, which is based on the Transverse Mercator (tmerc) projection, with
units in meter.

prj <- "epsg:27700"

With that we can transform the coordinates of uk from longitude latitude to the British National Grid.

guk <- project(uk, prj)

‘We only want the main island, so want need to separate (disaggregate) the different polygons.

4 Chapter 2. 2. The length of a coastline
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duk <- disagg(guk)

head(duk)

## GID_0 NAME_G®
## 1 GBR United Kingdom
## 2  GBR United Kingdom
## 3  GBR United Kingdom
## 4  GBR United Kingdom
## 5 GBR United Kingdom
## 6  GBR United Kingdom

Now we have 920 features. We want the largest one.

a <- expanse(duk)
i <- which.max(a)
a[i] / 1000000
## [1] 219769.8
b <- duk[i,]

Britain has an area of about 220,000 km?.

par(mai=rep(0,4))
plot(b)
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On to the tricky part. The function to go around the coast with a ruler (yardstick) of a certain length.

measure_with_ruler <- function(pols, stick_length, lonlat=FALSE) {
# some sanity checking
stopifnot(inherits(pols, "SpatVector™))
stopifnot(length(pols) == 1)

# get the coordinates of the polygon
g <- geom(pols)[, c('x", "y")]
nr <- nrow(g)

# we start at the first point
pts <- 1
newpt <- 1
while(TRUE) {
# start here
P <- newpt

(continues on next page)

6 Chapter 2. 2. The length of a coastline




Spatial Data Analysis Case Studies

(continued from previous page)

# order the points

j <= p:(p+nr-1)

j[j > nr] <- j[j > nr] - nr
g9 <- glj,]

# compute distances
pd <- distance(gg[l,,drop=FALSE], gg, lonlat)
pd <- as.vector(pd)
# get the first point that is past the end of the ruler
# this is precise enough for our high resolution coastline
i <- which(pd > stick_length)[1]
if (is.na(i)) {
stop('Ruler is longer than the maximum distance found')

}

# get the record number for new point in the original order
newpt <- i + p

# stop if past the last point
if (newpt >= nr) break

pts <- c(pts, newpt)
}
# add the last (incomplete) stick.
pts <- c(pts, 1)
# return the locations
glpts, 1

Now we have the function, life is easy, we just call it a couple of times, using rulers of different lengths (although it
takes a while to run).

y <- 1list(Q
rulers <- c(25,50,100,150,200,250) # km
for (i in 1:length(rulers)) {
y[[i]] <- measure_with_ruler(b, rulers[i]*1000)

}

Object y is a list of matrices containing the locations where the ruler touched the coast. We can plot these on top of the
map of Britain.

par(mfrow=c(2,3), mai=rep(0,4))
for (i in 1:length(y)) {
plot(b, col='lightgray', lwd=2)
p <~ y[[il]
lines(p, col="red', lwd=3)
points(p, pch=20, col="blue', cex=2)

bar <- rbind(cbind(525000, 900000), cbind(525000, 900000-rulers[i]*1000))
lines(bar, lwd=2)
points(bar, pch=20, cex=1.5)

(continues on next page)
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(continued from previous page)

text (525000, mean(bar[,2]), paste(rulers[i], ' km
text (525000, bar[2,2]-50000, paste®('(', nrow(p),

"), cex=1.5)
")), cex=1.25)
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The coastline of Britain, measured with rulers of different lengths. The number of segments is in parenthesis. £

Here is the fractal (log-log) plot. Note how the axes are on the log scale, but that I used the non-transformed values for
the labels.

# number of times a ruler was used
n <- sapply(y, nrow)

# set up empty plot
plot(log(rulers), log(n), type='n', xlim=c(2,6), ylim=c(2,6), axes=FALSE,
xaxs="1",yaxs="1i", xlab='Ruler length (km)', ylab='Number of segments')

# axes

tics <- ¢(1,10,25,50,100,200,400)

axis(l, at=log(tics), labels=tics)
axis(2, at=log(tics), labels=tics, las=2)

# linear regression line
m <- Im(log(n)~log(rulers))
abline(m, lwd=3, col='lightblue")

# add observations
points(log(rulers), log(n), pch=20, cex=2, col='red')
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What does this mean? Let’s try some very small rulers, from 1 mm to 10 m.

small_rulers <- c(0.000001, 0.00001, 0.0001, 0.001, 0.01) # km

nprd <- exp(predict(m, data.frame(rulers=small_rulers)))

coast <- nprd * small_rulers

plot(small_rulers, coast, xlab='Length of ruler', ylab='Length of coast', pch=20, cex=2,.
—col="red")

10 Chapter 2. 2. The length of a coastline
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So as the ruler get smaller, the coastline gets exponentially longer. As the ruler approaches zero, the length of the
coastline approaches infinity.

The fractal dimension D of the coast of Britain is the (absolute value of the) slope of the regression line.

m

##

## Call:

## Im(formula = log(n) ~ log(rulers))
##

## Coefficients:

## (Intercept) log(rulers)

#i# 8.632 -1.148

Get the slope

-1 * m$coefficients[2]

(continues on next page)
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(continued from previous page)

## log(rulers)
## 1.148083

Not to far away from Mandelbrot’s D = 1.25 for the west coast of Britain.

Further reading.

12 Chapter 2. 2. The length of a coastline
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CHAPTER
THREE

3. ANALYZING SPECIES DISTRIBUTION DATA

3.1 Introduction

In this case-study I show some techniques that can be used to analyze species distribution data with R. Before going
through this document you should at least be somewhat familiar with R and spatial data manipulation in R. This docu-
ment is based on an analysis of the distribution of wild potato species by Hijmans and Spooner (2001). Wild potatoes
(Solanaceae; Solanum sect. Petota are relatives of the cultivated potato. There are nearly 200 different species that
occur in the Americas.

3.2 Import and prepare data

The data we will use is available in the rspatial package. First install that from github, using the remotes package.

if (!require("rspat")) remotes::install_github('rspatial/rspat')
## Loading required package: rspat

## Loading required package: terra

## terra 1.7.62

library(rspat)

The extracted file is a csv file (comma-seperated-by values). We can read it with:

f <- system.file("wildpot.csv", package="rspat")
basename (£)

## [1] "wildpot.csv"

v <- read.csv(f)

The coordinates in v are expressed in degrees, minutes, seconds (in separate columns, fortunately). We need to compute
longitude and latitude as single decimal numbers.

# first coerce character values to numbers

for (i in c('LongD', 'LongM', 'LongS', 'LatD', 'LatM', 'LatS')) {
v[, i] <- as.numeric(v[,i])

}

v§lon <- -1 * (v$LongD + v$LongM / 60 + v$LongS / 3600)

vflat <- v$LatD + vS$LatM / 60 + v$LatS / 3600

# Southern hemisphere gets a negative sign
v$lat[v$LatH == 'S'] <- -1 * v$lat[v$LatH == 'S']
head(v)

(continues on next page)
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(continued from previous page)

## ID COLNR DATE LongD LonglM LongS LongH LatD LatM LatS LatH

## 1 55 OKA 3901 19710405 65 45 0 w22 8 0 S

## 2 16 OKA 3920 19710406 66 6 0 W 21 53 0 S

## 3 204 HOF 1848 19710305 65 5 0 W 22 16 0 S

## 4 545 OKA 4015 19710411 66 15 0 w22 32 0 S

## 5 549 OKA 4026 19710411 66 12 0 W 22 30 0 S

## 6 551 OKA 4030A 19710411 66 12 0 W 22 28 0 S

## SPECIES SCODE_NEW SUB_NEW SP_ID  COUNTRY ADMI ADM2

## 1 S. acaule Bitter acl ACL 1 ARGENTINA Jujuy Yavi

## 2 S. acaule Bitter acl ACL 1 ARGENTINA Jujuy Santa Catalina

## 3 S. acaule Bitter acl ACL 1 ARGENTINA Salta Santa Victoria

## 4 S. acaule Bitter acl ACL 1 ARGENTINA Jujuy Rinconada

## 5 S. acaule Bitter acl ACL 1 ARGENTINA Jujuy Rinconada

## 6 S. acaule Bitter acl ACL 1 ARGENTINA Jujuy Rinconada

## LOCALITY PLRV1 PLRV2 FROST Ilon
## 1 Tafna. R R 100 -65.75000
## 2 10 km W of Santa Catalina. S R 100 -66.10000
## 3 53 km E of Cajas. S R 100 -65.08333
## 4 Near Abra de Fundiciones, 10 km S of Rinconada. S R 100 -66.25000
## 5 8 km SW of Fundiciones. S R 100 -66.20000
## 6 Salveayoc, 5 km SW of Rinconada. S R 100 -66.20000
## lat

## 1 -22.13333

## 2 -21.88333

## 3 -22.26667

## 4 -22.53333

## 5 -22.50000

## 6 -22.46667

Get a SpatVector with most of the countries of the Americas.

cn <- spat_data("pt_countries™)
class(cn)

## [1] "SpatVector"

## attr(, "package")

## [1] "terra"

Make a quick map

plot(cn, xlim=c(-120, -40), ylim=c(-40,40), axes=TRUE)
points(v$lon, v$lat, cex=.5, col='red')

14 Chapter 3. 3. Analyzing species distribution data
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And create a SpatVector for the potato data with the formula approach

sp <- vect(v, crs="+proj=longlat +datum=WGS84")

3.3 Summary statistics

We are first going to summarize the data by country. We can use the country variable in the data, or extract that from
the countries SpatVector.

table (v$COUNTRY)

##

## ARGENTINA BOLIVIA BRAZIL CHILE COLOMBIA
## 1474 985 17 100 107
## COSTA RICA ECUADOR GUATEMALA HONDURAS Mexico
## 24 138 59 1 2

(continues on next page)
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(continued from previous page)

## MEXICO PANAMA PARAGUAY Peru PERU
## 843 13 19 1 1043
## UNITED STATES URUGUAY VENEZUELA
## 157 4 12

# note Peru and PERU
v$COUNTRY <- toupper (v$COUNTRY)

table (v§COUNTRY)

##

## ARGENTINA BOLIVIA BRAZIL CHILE COLOMBIA
## 1474 985 17 100 107
## COSTA RICA ECUADOR GUATEMALA HONDURAS MEXICO
## 24 138 59 1 845
## PANAMA PARAGUAY PERU UNITED STATES URUGUAY
## 13 19 1044 157 4
## VENEZUELA

## 12

# same fix for the SpatVector
sp$COUNTRY <- toupper (sp$COUNTRY)

Below we determine the country using a spatial query, using the intersect method.

vv <- intersect(sp[, "COUNTRY"], cn)
names (vv) [1] <- "ptCountry"

head(vv)

##  ptCountry COUNTRY

## 1 ARGENTINA ARGENTINA

## 2 ARGENTINA ARGENTINA

## 3 ARGENTINA ARGENTINA

## 4 ARGENTINA ARGENTINA

## 5 ARGENTINA ARGENTINA

## 6 ARGENTINA ARGENTINA

table (vv$COUNTRY)

##

## ARGENTINA BOLIVIA BRASIL CHILE
## 1473 985 17 94
## COLOMBIA COSTA RICA ECUADOR GUATEMALA
## 104 24 139 58
## HONDURAS MEXICO PANAMA PARAGUAY
## 1 846 13 19
## PERU UNITED STATES, THE URUGUAY VENEZUELA
## 1042 157 4 14

This table is similar to the previous table, but it is not the same. Let’s find the records that are not in the same country
according to the original data and the spatial query.

# some fixes first

# apparantly in the ocean (small island missing from polygon data)
vv$COUNTRY[is.na(vv$COUNTRY)] <- ""

# some spelling differenes

vv$COUNTRY [vv$COUNTRY=="UNITED STATES, THE"] <- "UNITED STATES"
vv$COUNTRY [vv$COUNTRY=="BRASIL"] <- "BRAZIL"

(continues on next page)
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(continued from previous page)

i <- which(toupper(vv$ptCountry) != vv$COUNTRY)
i

## [1] 581 582 1616 1634 3214 3516
as.data.frame(vv[i,])

##  ptCountry  COUNTRY

## 1 COLOMBIA ECUADOR

## 2 ECUADOR COLOMBIA

## 3 COLOMBIA ECUADOR

## 4 COLOMBIA VENEZUELA

## 5 GUATEMALA MEXICO

## 6 COLOMBIA VENEZUELA

plot(cn, x1lim=c(-120, -40), ylim=c(-40,40), axes=TRUE)
points(sp, cex=.25, pch="+", col="blue')

points(vv[i,], col="red', pch="x"', cex=1.5)

3.3. Summary statistics
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All observations that are in a different country than their attribute data suggests are very close to an international border,
or in the water. That suggests that the coordinates of the potato locations are not very precise (or the borders are inexact).
Otherwise, this is reassuring (and a-typical). There are often are several inconsistencies, and it can be hard to find out
whether the locality coordinates are wrong or whether the borders are wrong; but further inspection is warranted in
those cases.

We can compute the number of species for each country.

spc <- tapply(v$SPECIES, sp$COUNTRY, function(x)length(unique(x)) )
spc <- data.frame (COUNTRY=names(spc), nspp = Spc)

# merge with country SpatVector --- fix the names in the polygons this time
cn$COUNTRY [cn$COUNTRY=="UNITED STATES, THE"] <- "UNITED STATES"
cn$COUNTRY [cn$COUNTRY=="BRASIL"] <- "BRAZIL"

cns <- merge(cn, spc, by="COUNTRY", all.x=TRUE)
plot(cns, "nspp", col=rev(terrain.colors(25)), breaks=c(1,5,10,20,30,40,90))

18 Chapter 3. 3. Analyzing species distribution data
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The map shows that Peru is the country with most potato species, followed by Bolivia and Mexico. We can also tabulate

the number of occurrences of each species by each country.

tb <- table(v[ c('COUNTRY', 'SPECIES')])
# a big table

dim(tb)

## [1] 16 195
# show two columns
tb[,2:3]

##

## COUNTRY

## ARGENTINA
## BOLIVIA

## BRAZIL

## CHILE

#i# COLOMBIA
## COSTA RICA

SPECIES

S. achacachense CRrdenas S. acroglossum Juz.

0

S S S X

= I R — I — R — )

(continues on next page)
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(continued from previous page)

##  ECUADOR 0 0
##  GUATEMALA 0 0
##  HONDURAS 0 0
##  MEXICO 0 0
##  PANAMA 0 0
##  PARAGUAY 0 0
##  PERU 0 6
##  UNITED STATES 0 0
##  URUGUAY 0 0

0 0

##  VENEZUELA

Because the countries have such different sizes and shapes, the comparison is not fair (larger countries will have more
species, on average, than smaller countries). Some countries are also very large, hiding spatial variation. The map the
number of species, it is in most cases better to use a raster (grid) with cells of equal area, and that is what we will do
next.

3.4 Projecting spatial data

To use a raster with equal-area cells, the data need to be projected to an equal-area coordinate reference system (CRS).
If the longitude/latitude date were used, cells of say 1 square degree would get smaller as you move away from the
equator: think of the meridians (vertical lines) on the globe getting closer to each other as you go towards the poles.

For small areas, particularly if they only span a few degrees of longitude, UTM can be a good CRS, but it this case we
will use a CRS that can be used for a complete hemisphere: Lambert Equal Area Azimuthal. For this CRS, you must
choose a map origin for your data. This should be somewhere in the center of the points, to minimize the distance (and
hence distortion) from any point to the origin. In this case, a reasonable location is (-80, 0).

# the CRS we want

laea <-"+proj=laea +lat_0=0 +lon_0=-80"
clb <- project(cn, laea)

pts <- project(sp, laea)

plot(clb)

points(pts, col='red', cex=.5)

20 Chapter 3. 3. Analyzing species distribution data
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Note that the shape of the countries is now much more similar to their shape on a globe than before we projected You
can also see that the coordinate system has changed by looking at the numbers of the axes. These express the distance
from the origin (-80, 0) in meters.

3.5 Species richness

Let’s determine the distribution of species richness using a raster. First we need an empty ‘template’ raster that has the
correct extent and resolution. Here I use 200 by 200 km cells.

r <- rast(clb)
# 200 km = 200000 m
res(r) <- 200000

Now compute the number of observations and the number of species richness for each cell.

3.5. Species richness 21
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rich <- rasterize(pts, r, "SPECIES", function(x, ...) length(unique(na.omit(x))))
plot(rich)
lines(clb)
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Now we make a raster of the number of observations.
obs <- rasterize(pts, r, field="SPECIES", fun=function(x, ...)length((na.omit(x))) )
plot(obs)
lines(clb)

22 Chapter 3. 3. Analyzing species distribution data
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A cell by cell comparison of the number of species and the number of observations.

- 100

plot(obs, rich, cex=1, xlab="Observations", ylab="Richness")

3.5. Species richness
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Observations

Clearly there is an association between the number of observations and the number of species. It may be that the number
of species in some places is inflated just because more research was done there.

The problem is that this association will almost always exist. When there are only few species in an area, researchers
will not continue to go there to increase the number of (redundant) observations. However, in this case, the relationship
is not as strong as it can be, and there is a clear pattern in species richness maps, it is not characterized by sudden
random like changes in richness (it looks like there is spatial autocorrelation, which is a good thing). Ways to correct
for this ‘collector-bias’ include the use of techniques such as ‘rarefaction’ and ‘richness estimators’.

There are often gradients of species richness over latitude and altitude. Here is how you can make a plot of the latitudinal
gradient in species richness.

d <- v[, c('lat', 'SPECIES")]

dflat <- round(d$lat)

g <- tapply(d$SPECIES, d$lat, function(x) length(unique(na.omit(x))) )
plot(names(g), 9)

# moving average

lines(names(g), raster::movingFun(g, 3))

24 Chapter 3. 3. Analyzing species distribution data
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** Question ** The distribution of species richness has two peaks. What would explain the low species richness
between -5 and 15 degrees?

3.6 Range size

Let’s estimate range sizes of the species. Hijmans and Spooner use two ways: (1) maxD, the maximum distance between
any pair of points for a species, and CAS50 the total area covered by circles of 50 km around each species. Here, I also
add the convex hull. T am using the projected coordinates, but it is also possible to compute these things from the
original longitude/latitude data.

Compute maxD for each species

spp <- unique(pts$SPECIES)
maxD <- rep(NA, length(spp))
for (s in 1:length(spp)) {

(continues on next page)
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(continued from previous page)

}

# get the coordinates for species 's’

p <- pts[pts$SPECIES == spp[s], ]

if (nrow(p) < 2) next

# distance matrix

d <- as.matrix(distance(p))

# ignore the distance of a point to itself
diag(d) <- NA

# get max value

maxD[s] <- max(d, na.rm=TRUE)

# Note the typical J shape
plot(rev(sort(maxD)) /1000, ylab="maxD (km)")

maxD (k)

1500 2000 2500
I
a)

1000

500
|

Compute CA

26
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CA <- rep(NA, length(spp))
for (s in 1:length(spp)) {
p <- pts[pts$SPECIES == spp[s], ]
# run "circles" model
m <- aggregate(buffer(p, 50000))
CA[s] <- expanse(m)
}
# standardize to the size of one circle
CA <- CA / (pi * 5000042)
plot(rev(sort(CA)), ylab="CA50")
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Index

Make convex hull range polygons

hull <- 1ist(Q
for (s in 1:length(spp)) {
p <- unique(pts[pts$SPECIES == spp[s], 1)

(continues on next page)
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(continued from previous page)

# need at least three (unique) points for hull
if (nrow(p) > 3) {

h <- convHull(p)

if (geomtype(h) == "polygons") {

hull[[s]] <- h

}

Plot the hulls. First remove the empty hulls (you cannot make a hull if you do not have at least three points).

# which elements are NULL

i <- which(!sapplyChull, is.null))
h <- hull[i]

# combine them

hh <- do.call(rbind, h)

plot(hh)

28 Chapter 3. 3. Analyzing species distribution data
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Get the area for each hull, taking care of the fact that some are NULL.

ahull <- expanse(hh)
plot(rev(sort(ahull)) /1000, ylab="Area of convex hull")

3.6. Range size
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To get a value (even if NA) for all species

cHull <- rep(NA, length(spp))
cHull[i] <- ahull

Compare all three measures

d <- cbind(maxD, CA, cHull)
pairs(d)
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3.7 Exercises

3.7.1 Exercise 1. Mapping species richness at different resolutions

1000000 2000000

il

A0+ 12

1 5a+12

1.0+

Make maps of the number of observations and of species richness at 50, 100, 250, and 500 km resolution. Discuss the

differences.

3.7. Exercises
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3.7.2 Exercise 2. Mapping diversity

Make a map of Shannon Diversity H for the potato data, at 200 km resolution.
a) First make a function that computes Shannon Diversity (H) from a vector of species names
H = -SUM(p * In(p))
Where p is proportion of each species
To get p, you can do
vv <- as.vector(table(v$SPECIES)) p <- vv / sum(vv)

b) now use the function

3.7.3 Exercise 3. Mapping traits

There is information about two traits in the data set in field PRLV (tolerance to Potato Leaf Roll Virus) and frost (frost
tolerance). Make a map of average frost tolerance.

3.8 References

Hijmans, R.J., and D.M. Spooner, 2001. Geographic distribution of wild potato species. American Journal of Botany
88:2101-2112
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