The terra package

Robert J. Hijmans

Nov 30, 2023

CONTENTS

The terra package

Classes

2.1 SpatRaster e e e e e e e e e e e e e
2.2 SpatVECOT . . . v v i e
23 SpatEXtento e e

Creating SpatRaster objects

Raster algebra

High-level methods

5.1 Modifying a SpatRaster object
52 Japp - o o e
5.3 PP - e e e e e e e e e
54 classify . .. e e e e e e
5.5 Focal e e e
5.6 Distance e e e e e e e
5.7 Spatial configuration L. L L e e e e
5.8 Predictions e e e e e e e e e e e
5.9 Vector to raster CONVEISION v v v v v v v e
510 Summarizeo L e e e e e e e e e e
Plotting

Writing files

7.1 Fileformat e e e e e e e e e e e e e

Cell-level functions

8.1 Introduction L e e e e e e e e e e

8.2 Accessingcell values L. e e e e e e e e e e e

Spatial prediction

0.1 Predict e e e e e e e e
9.1.1 GLM . . e
9.1.2 Principal components e e e e e e e e e
9.1.3 Random Forest e e e

0.2 cforest e e e e e e e e e

9.3 Interpolate e e e e e e e e e e
9.3.1 Thin plate spline interpolation withx andyonly
9.3.2 inverse distance weighted IDW) e

W W W W

21

23
23

25
25
26

9.3.3 Kriging

10 Miscellaneous
10.1 Session options

CHAPTER
ONE

THE TERRA PACKAGE

This vignette describes the R package terra. A raster is a spatial (geographic) data structure that divides a region into
rectangles called “cells” (or “pixels”) that can store one or more values for each of these cells. Such a data structure is
also referred to as a “grid” and is often contrasted with “vector” data that is used to represent points, lines, and polygons.

The terra package has functions for creating, reading, manipulating, and writing raster data. The package provides,
among other things, general raster data manipulation functions that can easily be used to develop more specific func-
tions. For example, there are functions to read a chunk of raster values from a file or to convert cell numbers to
coordinates and back. The package also implements raster algebra and most functions for raster data manipulation.

A notable feature of the terra package is that it can work with raster datasets that are stored on disk and are too large
to be loaded into memory (RAM). The package can work with large files because the objects it creates from these files
only contain information about the structure of the data, such as the number of rows and columns, the spatial extent,
and the filename, but it does not attempt to read all the cell values in memory. In computations with these objects, data
is processed in chunks. If no output filename is specified to a function, and the output raster is too large to keep in
memory, the results are written to a temporary file.

To understand what is covered in this vignette, you must understand the basics of the R language. There is a multitude
of on-line and other resources that can help you to get acquainted with it.

In the next section, some general aspects of the design of the terra package are discussed, notably the structure of
the main classes, and what they represent. The use of the package is illustrated in subsequent sections. terra has a
large number of functions, not all of them are discussed here, and those that are discussed are mentioned only briefly.
See the help files of the package for more information on individual functions and help("terra") for an index of
functions by topic.

The terra package

2 Chapter 1. The terra package

CHAPTER
TWO

CLASSES

The package is built around a number of “classes” of which the SpatRaster and SpatVector are the most important.

2.1 SpatRaster

A SpatRaster represents multi-layer (variable) raster data. A SpatRaster object stores a number of fundamen-
tal parameters that describe it. These include the number of columns and rows, the coordinates of its spatial extent
(‘bounding box’), and the coordinate reference system (the ‘map projection’). In addition, a SpatRaster can store
information about the file(s) in which the raster cell values are stored (if there are such files) — as raster cell values can
also be held in memory.

2.2 SpatVector

A SpatVector represents “vector” data, that is, points, lines or polygon geometries and their tabular attributes.

2.3 SpatExtent

Class for spatial extent

The terra package

4 Chapter 2. Classes

CHAPTER
THREE

CREATING SPATRASTER OBJECTS

A SpatRaster can easily be created from scratch using the function rast. The default settings will create a global
raster data structure with a longitude/latitude coordinate reference system and 1 by 1 degree cells. You can change these
settings by providing additional arguments such as xmin, nrow, ncol, and/or crs, to the function. You can also change
these parameters after creating the object. If you set the projection, this is only to properly define it, not to change it.
To transform a SpatRaster to another coordinate reference system (projection) you can use the function warp.

Here is an example of creating and changing a SpatRaster object ‘r’ from scratch.

SpatRaster with default geometry parameters

library(terra)

terra 1.7.62

X <- rast(Q)

X

class : SpatRaster

dimensions : 180, 360, 1 (nrow, ncol, nlyr)

resolution : 1, 1 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (0OGC:CRS84)

With other parameters

X <- rast(ncol=36, nrow=18, xmin=-1000, xmax=1000, ymin=-100, ymax=900)
res(x)
[1] 55.55556 55.55556

Change the spatial resolution of an existing object

res(x) <- 100

res(x)

[1] 100 100

ncol (x)

[1] 20

change the numer of columns (affects resolution)
ncol(x) <- 18

ncol (x)

[1] 18

res(x)

[1] 111.1111 100.0000

Set the coordinate reference system (CRS) (define the projection)

The terra package

crs(x) <- "+proj=utm +zone=48 +datum=WGS84"

X
class : SpatRaster

dimensions : 10, 18, 1 (nrow, ncol, nlyr)

resolution : 111.1111, 100 (x, y)

extent : -1000, 1000, -100, 900 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=utm +zone=48 +datum=WGS84 +units=m +no_defs

The object x created in the example above only consist of a “skeleton”, that is, we have defined the number of rows and
columns, and where the raster is located in geographic space, but there are no cell-values associated with it. Setting
and accessing values is illustrated below.

r <- rast(ncol=10, nrow=10)
ncell(r)

[1] 100

hasValues(r)

[1] FALSE

use the 'values' function, e.g.,
values(r) <- 1l:ncell(r)

or

set.seed(0)

values(r) <- runif(ncell(r))

hasValues(r)

[1] TRUE

sources(r)

[1] ""

values(r)[1:10]

[1] 0.8966972 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819 0.8983897
[8] 0.9446753 0.6607978 0.6291140

plot(r, main='Raster with 100 cells')

Raster with 100 cells

0.40

0.20

6 Chapter 3. Creating SpatRaster objects

The terra package

In some cases, for example when you change the number of columns or rows, you will lose the values associated with
the SpatRaster if there were any (or the link to a file if there was one). The same applies, in most cases, if you change
the resolution directly (as this can affect the number of rows or columns). Values are not lost when changing the extent
as this change adjusts the resolution, but does not change the number of rows or columns.

hasValues(r)
[1] TRUE
res(r)

[1] 36 18
dim(r)

[1] 10 10 1
xmax (r)

[1] 180

change the maximum x coordinate of the extent (bounding box) of the SpatRaster
xmax(r) <- 0O

hasValues(r)
[1] TRUE
res(r)

[1] 18 18
dim(r)

[1] 10 10 1

ncol(r) <- 6

hasValues(r)

[1] FALSE
res(r)

[1] 30 18
dim(r)

[1] 10 6 1
xmax (r)

[1] 0

The function terra also allows you to create a SpatRaster from another object, including another SpatRaster, or
SpatRaster objects from the “terra” package.

It is more common, however, to create a SpatRaster object from a file. The raster package can use raster files in several
formats, including some ‘natively’ supported formats and other formats via the rgdal package. Supported formats for
reading include GeoTIFF, ESRI, ENVI, and ERDAS. Most formats supported for reading can also be written to.

get the name of an example file installed with the package
do not use this construction of your own files
filename <- system.file("ex/meuse.tif", package="terra")
filename

[1] "C:/soft/R/R-4.3.2/library/terra/ex/meuse.tif"

r <- rast(filename)

sources(r)

[1] "C:/soft/R/R-4.3.2/library/terra/ex/meuse.tif"
hasValues(r)

[1] TRUE

plot(r, main='SpatRaster from file')

The terra package

SpatRaster from file

i
1800
2 1400
— 1200
= r
a7
— 1000
— 800
— 600
]
z — 400
— 200
179000 180000 181000

Multi-layer objects can be created in memory (from SpatRaster objects) or from files.

create three identical SpatRaster objects
rl <- r2 <- r3 <- rast(nrow=10, ncol=10)

Assign random cell values

values(rl) <- runif(ncell(rl))

values(r2) <- runif(ncell(r2))

values(r3) <- runif(ncell(r3))

Combine the three SpatRaster objects into a single object with three layers.

s <- c(rl, r2, r3)

s

class : SpatRaster

dimensions : 10, 10, 3 (nrow, ncol, nlyr)

resolution : 36, 18 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

(continues on next page)

8 Chapter 3. Creating SpatRaster objects

The terra package

(continued from previous page)

##
##
##
##
##

coord. ref.

source(s)
names

min values
max values

nlyr(s)

##

[17 3

: lon/lat WGS 84 (CRS84) (OGC:CRS84)
: memory

lyr.1, lyr.1, lyr.1

0 0.01307758, 0.02778712, 0.06380247
: 0.99268406, 0.98156346, 0.99607737

Create a multilayer SpatRaster from file

filename <- system.file("ex/logo.tif", package="terra")
filename
[1] "C:/soft/R/R-4.3.2/library/terra/ex/logo.tif"
b <- rast(filename)

b

##
##
##
##
##
##
##
##
##
##

class
dimensions
resolution
extent

coord. ref.

source
colors RGB
names

min values
max values

nlyr(b)

##

[1] 3

: SpatRaster

: 77, 101, 3 (nrow, ncol, nlyr)

1, 1 (x, y)

: 0, 101, 0, 77 (xmin, xmax, ymin, ymax)
: Cartesian (Meter)

: logo.tif

1, 2, 3

: red, green, blue

0, 0, 0

255, 255, 255

Extract a layer

r <- b[[2]]

The terra package

10 Chapter 3. Creating SpatRaster objects

CHAPTER
FOUR

RASTER ALGEBRA

Many generic functions that allow for simple and elegant raster algebra have been implemented for SpatRaster objects,
including the normal algebraic operators such as +, -, *, /, logical operators such as >, >=, <, ==, ! } and functions such
as abs, round, ceiling, floor, trunc, sqrt, log, 1log10, exp, cos, sin, max, min, range, prod, sum, any, all.
In these functions you can mix terra objects with numbers, as long as the first argument is a terra object.

library(terra)

terra 1.7.62

create an empty SpatRaster
r <- rast(ncol=10, nrow=10)
assign values to cells
values(r) <- 1l:ncell(r)

s <-r + 10

s <- sqrt(s)

s<-s*r+5

values(r) <- runif(ncell(r))
r <- round(r)

r <- r ==

You can also use replacement functions (not yet supported)

s[r] <- -0.5
s[!'r] <- 5
s[s == 5] <- 15

If you use multiple SpatRaster objects (in functions where this is relevant, such as range), these must have the same
resolution and origin. The origin of a SpatRaster object is the point closest to (0, 0) that you could get if you moved
from a corners of a SpatRaster object towards that point in steps of the x and *"y resolution. Normally these objects
would also have the same extent, but if they do not, the returned object covers the spatial intersection of the objects
used.

When you use multiple multi-layer objects with different numbers or layers, the ‘shorter’ objects are ‘recycled’. For
example, if you multiply a 4-layer object (al, a2, a3, a4) with a 2-layer object (b1, b2), the result is a four-layer object
(albl, a2b2, a3bl, a3b2).

r <- rast(ncol=5, nrow=5)
values(r) <- 1

s <- c(r, r+l)

q <- c(r, r+2, r+4, r+6)
X<-Tr+s+4(

X

class : SpatRaster

(continues on next page)

11

The terra package

(continued from previous page)

dimensions : 5, 5, 4 (nrow, ncol, nlyr)

resolution : 72, 36 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (OGC:CRS84)

source(s) ! memory

names : lyrl, lyr2, lyr3, lyr4

min values 3, 6, 7, 10

max values 3, 6, 7, 10

Summary functions (min, max, mean, prod, sum, Median, cv, range, any, all) always return a SpatRaster object.
Perhaps this is not obvious when using functions like min, sum or mean.

a <- mean(r, s, 10)
b <- sum(r, s)
st <- c(r, s, a, b)

sst <- sum(st)

sst

class : SpatRaster

dimensions : 5, 5, 1 (nrow, ncol, nlyr)

resolution : 72, 36 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (0GC:CRS84)

source(s) ! memory

name : sum

min value : 17.33333

max value : 17.33333

Use global if instead of a SpatRaster you want a single number summarizing the cell values of each layer.

global(st, 'sum')
sum
lyr.1 25.0000
lyr.1.1 25.0000
lyr.1.2 50.0000
lyrl 100.0000
lyr2 108.3333
lyrl.1 50.0000
lyr2.1 75.0000
global(sst, 'sum')
sum

sum 433.3333

12 Chapter 4. Raster algebra

CHAPTER
FIVE

HIGH-LEVEL METHODS

Several ‘high level’ methods (functions) have been implemented for SpatRaster objects. ‘High level” refers to meth-
ods that you would normally find in a GIS program that supports raster data. Here we briefly discuss some of these.
See the help files for more detailed descriptions.

The high-level methods have some arguments in common. The first argument is typically ‘x’ or ‘object’ and in most
cases it is a SpatRaster or a SpatVector. It is followed by one or more arguments specific to the method (either
additional SpatRaster objects or other arguments), followed by a filename="""and “...” arguments.

The default filename is an empty character “”’. If you do not specify a filename, the default action for the method is to
return a terra object that only exists in memory. However, if the method deems that the terra object to be created
would be too large to hold memory it is written to a temporary file instead.

The “...” argument allows for setting additional arguments that are relevant when writing values to a file: the file
format, datatype (e.g. integer or real values), and a to indicate whether existing files should be overwritten.

5.1 Modifying a SpatRaster object

There are several methods that deal with modifying the spatial extent of SpatRaster objects. The crop method lets
you take a geographic subset of a larger terra object. You can crop a SpatRaster by providing an extent object
or another spatial object from which an extent can be extracted (objects from classes deriving from Raster and from
Spatial in the sp package). An easy way to get an extent object is to plot a SpatRaster and then use drawExtent to
visually determine the new extent (bounding box) to provide to the crop method.

trim crops a SpatRaster by removing the outer rows and columns that only contain NA values. In contrast, extend
adds new rows and/or columns with NA values. The purpose of this could be to create a new SpatRaster with the
same Extent of another larger SpatRaster such that the can be used together in other methods.

The merge method lets you merge 2 or more SpatRaster objects into a single new object. The input objects must
have the same resolution and origin (such that their cells neatly fit into a single larger raster). If this is not the case you
can first adjust one of the SpatRaster objects with use (dis)aggregate or resample.

aggregate and disagg allow for changing the resolution (cell size) of a SpatRaster object. In the case of
aggregate, you need to specify a function determining what to do with the grouped cell values (e.g. mean). It is
possible to specify different (dis)aggregation factors in the x and y direction. aggregate and disagg are the best
methods when adjusting cells size only, with an integer step (e.g. each side 2 times smaller or larger), but in some cases
that is not possible.

For example, you may need nearly the same cell size, while shifting the cell centers. In those cases, the resample
method can be used. It can do either nearest neighbor assignments (for categorical data) or bilinear interpolation (for
numerical data). Simple linear shifts of a Raster object can be accomplished with the shift method or with the extent
method. resample should not be used to create a SpatRaster object with much larger resolution. If such adjustments
need to be made then you can first use aggregate.

13

The terra package

With the warp method you can transform values of a SpatRaster to a new object with a different coordinate reference
system.

Here are some simple examples.

library(terra)

terra 1.7.62

r <- rast(ncol=10, nrow=10, xmin=0, xmax=10, ymin=0, ymax=10)
values(r) <- 1l:ncell(r)

ra <- aggregate(r, 2)

rl <- crop(r, ext(0®, 5, 0, 5))

r2 <- crop(r, ext(4, 10, 4, 10))

m <- merge(rl, r2, filename='test.tif', overwrite=TRUE)
plot(m)

bf lets you flip the data (reverse order) in horizontal or vertical direction — typically to correct for a ‘communication
problem’ between different R packages or a misinterpreted file. rotate lets you rotate longitude/latitude rasters that
have longitudes from 0 to 360 degrees (often used by climatologists) to the standard -180 to 180 degrees system. With

14 Chapter 5. High-level methods

The terra package

t you can rotate a SpatRaster object 90 degrees.

5.2 lapp

The 1app (for layer-apply) method can be used as an alternative to the raster algebra discussed above. Like the methods
discussed in the following subsections provide either easy to use short-hand, or more efficient computation for large
(file based) objects.

With lapp you can combine multiple SpatRaster objects. The related method mask removes all values from one layer
that are NA in another layer, and cover combines two layers by taking the values of the first layer except where these
are NA.

5.3 app

The app method allows you to do a computation across the layers of a terra object by providing a function (like apply
on a matrix or data.frame). If you supply a SpatRaster, another SpatRaster is returned. tapp computes summary
type layers for subsets of a SpatRaster (like tapply on a matrix or data.frame).

5.4 classify

You can use cut or classify to replace ranges of values with single values, or subs to substitute (replace) single
values with other values.

r <- rast(ncol=3, nrow=2)
values(r) <- 1l:ncell(r)
values(r)

lyr.1

[1,] 1

[2,] 2

[3,] 3

[4,] 4

[5,] 5

[6,] 6

s <- app(r, fun=function(x){ x[x < 4] <- NA; return(x)})
as.matrix(s)

lyr.1

[1,] NA

[2,] NA

[3,] NA

[4,] 4
[5,] 5
[6,] 6

t <- lapp(c(r, s), fun=function(x, y){ x / (2 * sqrt(y)) + 5 })
as.matrix(t)

lyril
[1,] NA
12,1 NA
[3,] NA

[4,] 6.000000

(continues on next page)

5.2. lapp 15

The terra package

(continued from previous page)

[5,] 6.118034
[6,] 6.224745
u <- mask(r, t)

as.matrix(u)

lyr.1

[1,] NA
[2,] NA
[3,] NA
[4,] 4

[5,] 5
[6,] 6

vV <- u==s
as.matrix(v)

lyr.1

[1,] NA
[2,] NA
[3,] NA
[4,] TRUE
[5,] TRUE
[6,] TRUE

w <- cover(t, r)
as.matrix(w)

lyrl
[1,] 1.000000
[2,] 2.000000
[3,] 3.000000
[4,] 6.000000
[5,] 6.118034
[6,] 6.224745
x <- classify(w, c(0,2,1,
as.matrix(x)

lyrl

[1,] 0

[2,] 1

[3,] 4

[4,] 7

[5,] 7

[6,] 7

2,5,2, 4,10,3))

y <- classify(x, cbind(id=c(2,3), v=c(40,50)))
as.matrix(y)
lyrl

##
##
##
##
##
##
##

0

N NN A =

16

Chapter 5. High-level methods

The terra package

5.5 Focal

The focal method currently only works for (single layer) SpatRaster objects. It uses values in a neighborhood of cells
around a focal cell, and computes a value that is stored in the focal cell of the output SpatRaster. The neighborhood is
a user-defined a matrix of weights and could approximate any shape by giving some cells zero weight. It is possible to
only compute new values for cells that are NA in the input SpatRaster.

5.6 Distance

There are a number of distance related methods. distance computes the shortest distance to cells that are not NA.
pointDistance computes the shortest distance to any point in a set of points. gridDistance computes the dis-
tance when following grid cells that can be traversed (e.g. excluding water bodies). direction computes the direction
towards (or from) the nearest cell that is not NA. adjacency determines which cells are adjacent to other cells, and
pointDistance computes distance between points. See the gdistance package for more advanced distance calcu-
lations (cost distance, resistance distance)

5.7 Spatial configuration

The clump method identifies groups of cells that are connected. boundaries identifies edges, that is, transitions be-
tween cell values. area computes the size of each grid cell (for unprojected rasters), this may be useful to, e.g. compute
the area covered by a certain class on a longitude/latitude raster.

r <- rast(nrow=45, ncol=90)

values(r) <- round(runif(ncell(r))*3)
a <- cellSize(r)

zonal(a, r, "sum")

lyr.1 area
1 0 8.448284e+13
2 1 1.718097e+14
3 2 1.682943e+14
4 3 8.547879e+13

5.8 Predictions

The package has two methods to make model predictions to (potentially very large) rasters. predict takes a multilayer
raster and a fitted model as arguments. Fitted models can be of various classes, including glm, gam, randomforest,
and brt. method interpolate is similar but is for models that use coordinates as predictor variables, for example in
kriging and spline interpolation.

5.5. Focal 17

The terra package

5.9 Vector to raster conversion

The raster packages supports point, line, and polygon to raster conversion with the rasterize method. For vector
type data (points, lines, polygons), objects of Spatial* classes defined in the sp package are used; but points can also
be represented by a two-column matrix (x and y).

Point to raster conversion is often done with the purpose to analyze the point data. For example to count the number
of distinct species (represented by point observations) that occur in each raster cell. rasterize takes a SpatRaster
object to set the spatial extent and resolution, and a function to determine how to summarize the points (or an attribute
of each point) by cell.

Polygon to raster conversion is typically done to create a SpatRaster that can act as a mask, i.e. to set to NA a set of
cells of a terra object, or to summarize values on a raster by zone. For example a country polygon is transferred to
a raster that is then used to set all the cells outside that country to NA; whereas polygons representing administrative
regions such as states can be transferred to a raster to summarize raster values by region.

It is also possible to convert the values of a SpatRaster to points or polygons, using as.points and as.polygons.
Both methods only return values for cells that are not NA.

5.10 Summarize

When used with a SpatRaster object as first argument, normal summary statistics functions such as min, max and
mean return a SpatRaster. You can use global if, instead, you want to obtain a summary for all cells of a single
SpatRaster object. You can use freq to make a frequency table, or to count the number of cells with a specified
value. Use zonal to summarize a SpatRaster object using zones (areas with the same integer number) defined in a
SpatRaster and crosstab to cross-tabulate two SpatRaster objects.

r <- rast(ncol=36, nrow=18)
values(r) <- runif(ncell(r))
global(r, mean)

mean
lyr.1 0.4961895
s <-r

values(s) <- round(runif(ncell(r)) * 5)
zonal(r, s, 'mean')
lyr.1 lyr.1.1

1 0 0.4922367
2 1 0.4815709
3 2 0.5392224
4 3 0.4580574
5 4 0.4816334
6 5 0.5544121
freq(s)

layer value count
1 1 0 71
2 1 1 135
3 1 2 130
4 1 3 125
5 1 4 130
6 1 5 57

freq(s, value=3)
layer value count
1 1 3 125

(continues on next page)

18 Chapter 5. High-level methods

The terra package

(continued from previous page)

crosstab(c(r*3, s))

lyr.1.1

lyr.1 0 1 2 3 4 5
0 17 23 16 24 25 10
1 17 48 35 48 42 12
2 25 47 56 38 42 21
3 12 17 23 15 21 14

5.10. Summarize 19

The terra package

20 Chapter 5. High-level methods

CHAPTER
SIX

PLOTTING

Several generic functions have been implemented for SpatRaster objects to create maps and other plot types. Use ‘plot’
to create a map of a SpatRaster object. When plot is used with a SpatRaster, it calls the function ‘rasterlmage’ (but,
by default, adds a legend; using code from fields::image.plot). It is also possible to directly call image. You can zoom
in using ‘zoom’ and clicking on the map twice (to indicate where to zoom to). With click it is possible to interactively
query a SpatRaster object by clicking once or several times on a map plot.

After plotting a SpatRaster you can add vector type spatial data (points, lines, polygons). You can do this with
functions points, lines, polygons if you are using the basic R data structures or plot(object, add=TRUE) if you are using
Spatial* objects as defined in the sp package. When plot is used with a multi-layer SpatRaster object, all layers are
plotted (up to 16), unless the layers desired are indicated with an additional argument. You can also plot SpatRaster
objects with ggplot (via the “tidyterra” package). The rasterVis package has several other lattice based plotting
functions for SpatRaster objects.

Multi-layer SpatRasters can be plotted as a single plot if they channels are declared as RGB channels (red, green blue),
see 7RGB

library(terra)

terra 1.7.62

b <- rast(system.file("ex/logo.tif", package="terra"))
nlyr(b)

[1] 3

RGB(b)

[1] 1 2 3

plot(b)

21

The terra package

You can also use the a number of other plotting functions with a terra object as argument, including hist, persp,
contour, and density. See the help files for more info.

22 Chapter 6. Plotting

CHAPTER
SEVEN

WRITING FILES

7.1 File format

“terra” can read and write most file formats, via the GDAL library. For netCDF files, use writeCDF

23

The terra package

24 Chapter 7. Writing files

CHAPTER
EIGHT

CELL-LEVEL FUNCTIONS

8.1 Introduction

The cell number is an important concept in the raster package. Raster data can be thought of as a matrix, but in a
SpatRaster it is more commonly treated as a vector. Cells are numbered from the upper left cell to the upper right
cell and then continuing on the left side of the next row, and so on until the last cell at the lower-right side of the raster.
There are several helper functions to determine the column or row number from a cell and vice versa, and to determine
the cell number for x, y coordinates and vice versa.

library(terra)

terra 1.7.62

r <- rast(ncol=36, nrow=18)
ncol (r)

[1] 36

nrow(r)

[1] 18

ncell(r)

[1] 648

rowFromCell(r, 100)

[1] 3

colFromCell(r, 100)

[1] 28
cellFromRowCol(r,5,5)

[1] 149

xyFromCell(r, 100)

#i# Xy

[1,] 95 65
cellFromXY(r, cbind(0,0))

[1] 343
colFromX(r, 0)
[1] 19
rowFromY(r, 0)
[1] 10

25

The terra package

8.2 Accessing cell values

Cell values can be accessed with several methods. Use values to get all values or a single row; and valuesBlock to
read a block (rectangle) of cell values.

r <- rast(system.file("ex/meuse.tif", package="terra"))
v <- values(r)

v[708:712]

[1] NA NA NA NA NA

You can also read values using cell numbers or coordinates (xy) using the extract method.

cells <- cellFromRowCol(r, 50, 35:39)

cells

[1] 3955 3956 3957 3958 3959
rlcells]

meuse

1 743

2 706

3 646

4 686

5 758

xy <- xyFromCell(r, cells)
Xy

#i# b'd y

[1,] 179780 332020
[2,] 179820 332020
[3,] 179860 332020
[4,] 179900 332020
[5,] 179940 332020
extract(r, xy)

meuse

1 743
2 706
3 646
4 686
5 758

You can also extract values using SpatialPolygons™* or SpatialLines*. The default approach for extracting raster values
with polygons is that a polygon has to cover the center of a cell, for the cell to be included. However, you can use
argument “weights=TRUE” in which case you get, apart from the cell values, the percentage of each cell that is covered
by the polygon, so that you can apply, e.g., a “50% area covered” threshold, or compute an area-weighted average.

In the case of lines, any cell that is crossed by a line is included. For lines and points, a cell that is only ‘touched’ is
included when it is below or to the right (or both) of the line segment/point (except for the bottom row and right-most
column).

In addition, you can use standard R indexing to access values, or to replace values (assign new values to cells) in a
terra object. If you replace a value in a terra object based on a file, the connection to that file is lost (because it now
is different from that file). Setting raster values for very large files will be very slow with this approach as each time a
new (temporary) file, with all the values, is written to disk. If you want to overwrite values in an existing file, you can
use update (with caution!)

26 Chapter 8. Cell-level functions

The terra package

#r[cells]
#r[l1:4]
#sources(r)
#r[2:3] <- 10
#r[1:4]
#sources(r)

Note that in the above examples values are retrieved using cell numbers. That is, a raster is represented as a (one-
dimensional) vector. Values can also be inspected using a (two-dimensional) matrix notation. As for R matrices, the
first index represents the row number, the second the column number.

#r[1]
#r[2,2]
#r[1,]
#r[,2]
#r[1:3,1:3]

keep the matrix structure
#r[1:3,1:3, drop=FALSE]

Accessing values through this type of indexing should be avoided inside functions as it is less efficient than accessing
values via functions like values.

8.2. Accessing cell values 27

The terra package

28 Chapter 8. Cell-level functions

CHAPTER
NINE

SPATIAL PREDICTION

This chapters shows some examples for making spatial prediction with different types of models. Using the predict
and interpolate methods.

The is the data we use.

library(terra)
logo <- rast(system.file("ex/logo.tif", package="terra"))
names(logo) <- c("red", "green", "blue")

p <- matrix(c(48, 48, 48, 53, 50, 46, 54, 70, 84, 85, 74, 84, 95, 85,
66, 42, 26, 4, 19, 17, 7, 14, 26, 29, 39, 45, 51, 56, 46, 38, 31,
22, 34, 60, 70, 73, 63, 46, 43, 28), ncol=2)

a <- matrix(c(22, 33, 64, 85, 92, 94, 59, 27, 30, 64, 60, 33, 31, 9,
99, 67, 15, 5, 4, 30, 8, 37, 42, 27, 19, 69, 60, 73, 3, 5, 21,
37, 52, 70, 74, 9, 13, 4, 17, 47), ncol=2)

xy <- rbind(cbind(1l, p), cbind(®, a))

extract predictor values for points
e <- extract(logo, xy[,2:31)

combine with response
v <- data.frame(cbind(pa=xy[,1], e))

9.1 Predict

9.1.1 GLM

A general linear model (GLM)

#build a model, here with glm
model <- glm(formula=pa~., data=v)

#predict to a raster
rl <- predict(logo, model)

plot(rl)
points(p, bg='blue', pch=21)
points(a, bg='red', pch=21)

29

The terra package

logistic regression

model <- glm(formula=pa~., data=v, family="binomial")

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
rllog <- predict(logo, model, type="response™)

use a modified function to get the probability and standard error
from the glm model. The values returned by "predict" are in a list,
and this list needs to be transformed to a matrix

predfun <- function(model, data) {
v <- predict(model, data, se.fit=TRUE)
cbind(p=as.vector(v$fit), se=as.vector(v$se.fit))

}

r2 <- predict(logo, model, fun=predfun)

30 Chapter 9. Spatial prediction

The terra package

9.1.2 Principal components

Here using sampling to simulate an object too large to feed all its values to prcomp

sr <- values(spatSample(logo, 100, as.raster=TRUE))
pca <- prcomp(sr)

x <- predict(logo, pca)
plot(x)

o k3 = B B

library(pls)

##

Attaching package: 'pls'

The following object is masked from 'package:stats':
##

loadings

(continues on next page)

9.1. Predict 31

The terra package

(continued from previous page)

model <- plsr(formula=pa~., data=v)
this returns an array:
predict(model, v[1:5,])

, , 1 comps
##

pa
1 0.4918092
2 0.7463392
3 0.7774598
4 0.3499635
5 0.6490389
##

, , 2 comps
##

pa
1 0.6875604
2 1.0224901
3 1.0499689
4 0.5055191
5 0.9808813
##

, , 3 comps
##

pa
1 0.8172886
2 1.1435330
3 1.1717481
4 0.4949081

5 0.8458842
write a function to turn that into a matrix
pfun <- function(x, data) {
y <- predict(x, data)
d <- dim(y)
dim(y) <- c(prod(d[1:2]), d[3])
y
}

pp <- predict(logo, model, fun=pfun)

9.1.3 Random Forest

library(randomForest)

randomForest 4.7-1.1

Type rfNews() to see new features/changes/bug fixes.

rfmod <- randomForest(pa ~., data=v)

Warning in randomForest.default(m, y, ...): The response has five or fewer
unique values. Are you sure you want to do regression?

"

note the additional argument "type='response'' that is

passed to predict.randomForest

(continues on next page)

32 Chapter 9. Spatial prediction

The terra package

(continued from previous page)

r3 <- predict(logo, rfmod, type='response')

get class membership probabilities

VvV <- V
vv$pa <- as.factor(vv$pa)
rfmod2 <- randomForest(pa ~., data=vv)

r4 <- predict(logo, rfmod2, type='prob')
plot(r4, range=c(0,1))

9.1. Predict 33

The terra package

9.2 cforest

cforest is an alternative Random Forest implementation. Here an example with a factors argument

library(party)

Loading required package: grid

##

Attaching package: 'grid’

The following object is masked from 'package:terra':
##

depth

Loading required package: mvtnorm

Loading required package: modeltools

Loading required package: stats4

Loading required package: strucchange

Loading required package: zoo

##

Attaching package: 'zoo
The following object is masked from 'package:terra':

##

time<-

The following objects are masked from 'package:base':

##

as.Date, as.Date.numeric

Loading required package: sandwich

m <- cforest(pa~., control=cforest_unbiased(mtry=3), data=v)

the second argument in party:::predict.RandomForest

is "OOB", and not '"newdata" or similar. We need to write a wrapper
predict function to deal with this

predfun <- function(m, d, ...) predict(m, newdata=d, ...)

pc <- predict(logo, m, OOB=TRUE, fun=predfun)

With a knn model, we can use “app” instead of “predict”

library(class)

cl <- factor(c(rep(l, nrow(p)), rep(®, nrow(a))))

train <- extract(logo, rbind(p, a))

k <- app(logo, function(x) as.integer(as.character(knn(train, x, cl))))
plot(k)

34 Chapter 9. Spatial prediction

The terra package

9.3 Interpolate

9.3.1 Thin plate spline interpolation with x and y only

library(terra)

example data

r <-rast(system.file("ex/meuse.tif", package="terra"))
ra <- aggregate(r, 10)

xy <- data.frame(xyFromCell(ra, 1:ncell(ra)))

v <- values(ra)

Thin plate spline model
library(fields)
tps <- Tps(xy, V)

(continues on next page)

9.3. Interpolate 35

The terra package

(continued from previous page)

Warning:

Grid searches over lambda (nugget and sill variances) with minima at the endpoints:
(GCV) Generalized Cross-Validation

minimum at right endpoint lambda = 6.369487e-05 (eff. df= 17.10001)

X <- rast(r)

use model to predict values at all locations
p <- interpolate(x, tps)

p <- mask(p, r)

plot(p)

1750 1E000 181000

change the fun from predict to fields::predictSE to get the TPS standard error
se <- interpolate(x, tps, fun=predictSE)

se <- mask(se, r)

plot(se)

36 Chapter 9. Spatial prediction

The terra package

200
— 150
— 100

00

1750 1E000 181000

Add another predictor variable; let”’s call it elevation

elevation <- (init(r, "x") * init(r, "y")) / 100000000
names(elevation) <- "elev"
elevation <- mask(elevation, r)

z <- extract(elevation, vect(xy, c("x", "y'")), fun=function(x)x[1])
z <- z[,2,drop=FALSE]

add as another independent variable

vv <- na.omit(cbind(xy, z, v))

tps2 <- Tps(vv[,1:3], vv[,4])

Warning:

Grid searches over lambda (nugget and sill variances) with minima at the endpoints:
(GCV) Generalized Cross-Validation

minimum at right endpoint Ilambda = 0.0003764795 (eff. df= 17.10001)

#p2 <- interpolate(elevation, tps2)

(continues on next page)

9.3. Interpolate 37

The terra package

(continued from previous page)

#plot(p2)

as a linear coveriate

tps3 <- Tps(vv[,1:2], vv[,4], Z=vv[,3])

Warning:

Grid searches over lambda (nugget and sill variances) with minima at the endpoints:
(GCV) Generalized Cross-Validation

minimum at right endpoint lambda = 6.464444e-05 (eff. df= 17.10047)

Z is a separate argument in Krig.predict, so we need a new function
Internally (in interpolate) a matrix is formed of x, y, and elev (2)

pfun <- function(model, x, ...) {
predict(model, x[,1:2], Z=x[,3], ...)

}

p3 <- interpolate(elevation, tps3, fun=pfun)

plot(p3)

38 Chapter 9. Spatial prediction

The terra package

1100

1000

200

200

Too

0o

1750 1E000 181000

9.3.2 inverse distance weighted (IDW)

library(gstat)
data(meuse, package="sp")

r <- rast(system.file("ex/meuse.tif", package="terra"))

mg <- gstat(id = "zinc", formula = zinc~1, locations = ~x+y, data=meuse,
nmax=7, set=list(idp = .5))

z <- interpolate(r, mg, debug.level=0)

9.3. Interpolate

39

The terra package

9.3.3 Kriging

Kriging with gstat examples. Examples provided by Maurizio Marchi

orinary kriging

v <- variogram(log(zinc)~1, ~x+y, data=meuse)

mv <- fit.variogram(v, vgm(l, "Sph", 300, 1))

gOK <- gstat(NULL, "log.zinc", log(zinc)~1, meuse, locations=~x+y, model=mv)
OK <- interpolate(r, gOK, debug.level=0)

plot (OK)

log.zinc.pred leg.zinc.var

— 0.4
— 6.0
2 — 0.2
A
— 5.5
g — 0.2
— 5.0
|| 0.1

178500 179500 180500 181500

universial kriging

vu <- variogram(log(zinc)~elev, ~x+y, data=meuse)
mu <- fit.variogram(vu, vgm(l, "Sph", 300, 1))
gUK <- gstat(NULL, "log.zinc", log(zinc)~elev, meuse, locations=~x+y, model=mu)

(continues on next page)

40 Chapter 9. Spatial prediction

The terra package

(continued from previous page)

names(r) <- "elev"
UK <- interpolate(r, gUK, debug.level=0)
plot (UK)

log.zinc.pred log.zinc.var
401
30{
-]
— 201
— 101
[
178500 179500 180500 181500 178500 179500 180500 181500

co-kriging

gCoK <- gstat(NULL, 'log.zinc', log(zinc)~1, meuse, locations=~x+y)
gCoK <- gstat(gCoK, 'elev', elev~1l, meuse, locations=~x+y)

gCoK <- gstat(gCoK, 'cadmium', cadmium~1, meuse, locations=~x+y)
gCoK <- gstat(gCoK, 'copper', copper~1, meuse, locations=~x+y)

coV <- variogram(gCoK)

plot(coV, type='b', main='Co-variogram')

9.3. Interpolate 41

The terra package

En-varingram
] |]
log.zinc
o _|
o
=]
[]
™ _
[}
=
2 llogzinc.el |
o |logzincelev| eley
D -—
— =
= -]
o 27 o _
o — =
5 © o _|
e = R — o - -
T g .Zinc.cadmiLl b | ey cadmium cadmium
E T4 =7
[}
@ o] =] =
2 - o - o
g — o (=T
o pazinc.copps elev.copper | o Jdmium.copp copper
o =l 29 =,
2 0 . g]
= = Z .
- |] 3
Sy = []
™ ™
0 — E = 0 — 0 —
| | | ' | | | | | | | | |
500 1000 500 1000
distance

coV.fit <- fit.lmc(coV, gCoK, vgm(model='Sph', range=1000))
coV.fit

data:

log.zinc : formula = log(zinc)'~'1 ; data dim = 155 x 12
elev : formula = elev'~'1 ; data dim = 155 x 12

cadmium :@: formula = cadmium'~'1 ; data dim = 155 x 12

copper : formula = copper'~'1 ; data dim = 155 x 12

variograms:

model psill range
log.zinc Sph 0.7132435 1000
elev Sph 1.6908552 1000
cadmium Sph 17.4957356 1000
copper Sph 809.4027563 1000
log.zinc.elev Sph -0.7404289 1000
log.zinc.cadmium Sph 2.9802854 1000
elev.cadmium Sph -3.2983554 1000
(continues on next page)
42 Chapter 9. Spatial prediction

The terra package

(continued from previous page)

log.zinc.copper
elev.copper

cadmium.copper
~X + Yy

<environment:

Sph 20.4199742
Sph -22.4955673
Sph 111.1393673

1000
1000
1000

0x000001c174b59208>
plot(coV, coV.fit, main='Fitted Co-variogram')

semivariance

-0.4 00 00020406

05101520 00 1.0 20 3008

Fitted Co-variogram

log.zinc
DDEE
log.zinc.elev . elev
= DD-:-E!:.:-:-.:.
l:! [
w
L
il
" " [} - "
;.ﬂnc.cadmu:l, b ey cadmiLm cadmium
o | @) 50
Sl _ - oo
l'-h.\'l o Lo u
'-".'-' o =
0Q.ZiNC.CO glev.copper | o ldmium.copp copper
o | © 2 oL e o
00y Ty oo E o
o 2
' [
da P (]
000 | & ™
ﬁ ‘:'Dd:' o o
| | | ' | | | | | | | | |
500 1000 500 1000
distance

coK <- interpolate(r, coV.fit, debug.level=0)

plot(coK)

9.3. Interpolate

43

The terra package

kg zine. pred Hog.zinc.var
E [z
il nm
ra LR i)
E [s
d e
o LK1} F
nx tn
= 23 1 s
g a0 o B
rER] SR T FaEE] SR

dadmiuwm. pred gadmium.war S Copper.var
]] ¥
H - H 1| H &N

- - .
g . g - an
iy " B o = §

i L =
— = — —
g ™ g 4 = = =
=1 a =1 A =

T T T T T T
rER] SR rER] T FaEE] 3 HER] T FaEE] 3 HER]

GI:?".|DQ.IiI1B.E|E'u" w kg zine. cadmium cow.elewv. cadmium mﬁllug.zim::.mppe

% ain

i

4.m 415
£ i3 L
<1751 E i} i g 3
a4 =} LS 2 = m
151 B
{1 = &3 = 5
= . =
L] = 13 - =
| |
= A4 =
I ENEm I ENEm I ENEm I ENEm

{:-?ur.ele'ur.nnpper o -admium. copper

e

= .l'"
) o
u &
= i}
4 m
)
= = =
)
]

44 Chapter 9. Spatial prediction

CHAPTER
TEN

10.1 Session options

MISCELLANEOUS

There is a number of session options that influence reading and writing files. These can be set in a session, with
terraOptions, and saved to make them persistent in between sessions. But you probably should not change the
default values unless you have pressing need to do so. You can, for example, set the directory where temporary files are
written, and set your preferred default file format and data type. Some of these settings can be overwritten by arguments
to functions where they apply (with arguments like filename, datatype, format). Except for generic functions like mean,
‘+’, and sqrt. These functions may write a file when the result is too large to hold in memory and then these options
can only be set through the session options. The options chunksize and maxmemory determine the maximum size (in
number of cells) of a single chunk of values that is read/written in chunk-by-chunk processing of very large files.

library(terra)
terra 1.7.62
terraOptions()
0.6

##
##
##
##
##
##
##
##

memfrac

tolerance :
: FALSE

: FALSE

: C:/temp/RtmpmC1Xré6
: FLT4S

: 1

: 3

verbose
todisk
tempdir
datatype
memmin
progress

0.1

45

	The terra package
	Classes
	SpatRaster
	SpatVector
	SpatExtent

	Creating SpatRaster objects
	Raster algebra
	High-level methods
	Modifying a SpatRaster object
	lapp
	app
	classify
	Focal
	Distance
	Spatial configuration
	Predictions
	Vector to raster conversion
	Summarize

	Plotting
	Writing files
	File format

	Cell-level functions
	Introduction
	Accessing cell values

	Spatial prediction
	Predict
	GLM
	Principal components
	Random Forest

	cforest
	Interpolate
	Thin plate spline interpolation with x and y only
	inverse distance weighted (IDW)
	Kriging

	Miscellaneous
	Session options

