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CHAPTER
ONE

INTRODUCTION

This section provides a short introduction to satellite data analysis with R. Before reading this you should first learn the
basics of the terra package.

Getting satellite images for a specific project remains a challenging task. You have to find data that is suitable for
your objectives, and that you can get access to. Important properties to consider while searching the remotely sensed
(satellite) data include:

1. Spatial resolution, that is the size of the grid cells

2. Temporal resolution, that is the return time or frequency that data is collected; as well as the availability of
historical images, and for a particular moment in time

3. Spectral resolution, that is, the parts of the electromagnetic spectrum (wavelengths) for which measurements are
made

4. Radiometric resolution (sensor sensitivity; ability to measure small differences)

5. Quality issues, such as the presence of cloud-cover or of artifacts in the data (read about problems in Landsat
ETM+

There are numerous sources of remotely sensed data from satellites. Generally, the very high spatial resolution data
is available as (costly) commercial products. Lower spatial resolution data is freely available from NASA, ESA, and
other organizations. In this tutorial we’ll use freely available Landsat 8, Landsat 7, Landsat 5, Sentinel and MODIS
data. The Landsat program started in 1972 and is is the longest running Earth-observation satellite program.

You can access public satellite data from several sources, including:
i. http://earthexplorer.usgs.gov/
ii. https://lpdaacsvc.cr.usgs.gov/appeears/
iii. https://search.earthdata.nasa.gov/search
iv. https://Ipdaac.usgs.gov/data_access/data_pool
v. https://scihub.copernicus.eu/
vi. https://aws.amazon.com/public-data-sets/landsat/
See this web site for more sources of freely available satellite remote sensing data.

It is possible to download some satellite data using R-packages. For example, you can use the luna, MODIS or MODIS-
Tools package to search, download and pre-process different MODIS products.



http://rspatial.org/terra/
http://www.nrcan.gc.ca/node/9407
http://www.seos-project.eu/modules/remotesensing/remotesensing-c03-p05.html
http://www.seos-project.eu/modules/remotesensing/remotesensing-c03-p03.html
http://landsat.usgs.gov/products_slcoffbackground.php
http://landsat.usgs.gov/products_slcoffbackground.php
https://www.nasa.gov/
https://www.esa.int/
https://landsat.gsfc.nasa.gov/landsat-8/
https://landsat.gsfc.nasa.gov/landsat-7/
https://landsat.gsfc.nasa.gov/landsat-5/
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
https://landsat.gsfc.nasa.gov/a-landsat-timeline/
http://earthexplorer.usgs.gov/
https://lpdaacsvc.cr.usgs.gov/appeears/
https://search.earthdata.nasa.gov/search
https://lpdaac.usgs.gov/data_access/data_pool
https://scihub.copernicus.eu/
https://aws.amazon.com/public-data-sets/landsat/
http://gisgeography.com/free-satellite-imagery-data-list/
https://github.com/rspatial/luna
https://cran.r-project.org/web/packages/MODIS/index.html
https://cran.r-project.org/web/packages/MODISTools/index.html
https://cran.r-project.org/web/packages/MODISTools/index.html
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
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1.1 Terminology

Most remote sensing products consist of observations of reflectance data. That is, they are measures of the intensity
of the sun’s radiation that is reflected by the earth. Reflectance is normally measured for different wavelengths of the
electromagnetic spectrum. For example, it can be measured in the near-infrared, red, green, and blue wavelengths.
If that is the case, satellite data can be referred to as “multi-spectral” (or hyper-spectral if there are many separate
wavelengths)(reading)[https://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/.

The data are normally stored as raster data, and are generally referred to as “images”. Each separate image (for a place
and time) is referred to as as “scene” or “tile”. As there are measurements in multiple wavelengths, a single “satellite
image” has multiple observations for each pixel, that are stored in separate raster layers. In remote sensing jargon,
these layers (variables) are referred to as “bands” as they typically represent reflectance values for a particular spectral
bandwith, and grid cells are referred to as “pixels”.

1.2 Data

You can download all the data required for the examples used in this book using the R code below.

dir.create("data", showWarnings = FALSE)

if (!file.exists("data/rs/samples.rds")) {
download.file("https://biogeo.ucdavis.edu/data/rspatial/rs.zip", dest = "data/rs.zip

R

unzip(“"data/rs.zip", exdir="data")

1.3 Resources

Here is a short list of some resources to learn more about remote sensing image analysis
* Remote Sensing Digital Image Analysis
¢ Introductory Digital Image Processing: A Remote Sensing Perspective
* A survey of image classification methods and techniques for improving classification performance
* A Review of Modern Approaches to Classification of Remote Sensing Data

* Online remote sensing course
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https://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/
http://www.springer.com/us/book/9783642300615
https://www.pearsonhighered.com/program/Jensen-Introductory-Digital-Image-Processing-A-Remote-Sensing-Perspective-4th-Edition/PGM30020.html
http://www.tandfonline.com/doi/pdf/10.1080/01431160600746456
http://link.springer.com/chapter/10.1007%2F978-94-007-7969-3_9
http://nptel.ac.in/courses/105108077/

CHAPTER
TWO

EXPLORATION

In this chapter we describe how to explore satellite remote sensing data with R. We also show how to use them to make
maps.

We will primarily use a spatial subset of a Landsat 8 scene collected on June 14, 2017. The subset covers the area
between Concord and Stockton, in California, USA.

All Landsat scenes have a unique product ID and metadata. You can find the information on Landsat sensor, satellite,
location on Earth (WRS path, WRS row) and acquisition date from the product ID. For example, the product identifier
of the data we will use is ‘LC08_044034_20170614". Based on this guide, you can see that the Sensor-Satellite is
OLI/TIRS combined Landsat 8, WRS Path 44, WRS Row 34 and collected on June 14, 2017. Landsat scenes are most
commonly delivered as separate files for each band, combined into a single zip file.

We will start by exploring and visualizing the data (See the instructions in Chapter 1 for data downloading instructions
if you have not already done so).

2.1 Image properties

Create SpatRaster objects for single Landsat layers (bands)

library(terra)
## terra 1.7.62

# Blue
b2 <- rast('data/rs/LC08_044034_20170614_B2.tif"')

# Green
b3 <- rast('data/rs/LCO8_044034_20170614_B3.tif")

# Red
b4 <- rast('data/rs/LC08_044034_20170614_B4.tif')

# Near Infrared (NIR)
b5 <- rast('data/rs/LCO8_044034_20170614_B5.tif")

Print the variables to check. E.g.

b2

## class : SpatRaster

## dimensions : 1245, 1497, 1 (nrow, ncol, nlyr)
## resolution : 30, 30 (x, y)

(continues on next page)



https://www.google.com/maps/@37.940913,-121.7143556,55474m/data=!3m1!1e3
https://landsat.usgs.gov/what-worldwide-reference-system-wrs
https://landsat.usgs.gov/landsat-collections#Prod%20IDs
1-introduction.html#data
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(continued from previous page)

## extent : 594090, 639000, 4190190, 4227540 (xmin, xmax, ymin, ymax)
## coord. ref. : WGS 84 / UTM zone 10N (EPSG:32610)

## source : LCO8_044034_20170614_B2.tif

## name : LCO8_044034_20170614_B2

## min value : 0.0748399

## max value : 0.7177562

You can see the spatial resolution, extent, number of layers, coordinate reference system and more.

2.2 Image information and statistics

The below shows how you can access various properties from a SpatRaster object.

# coordinate reference system (CRS)

crs(b2)

## [1] "PROJCRS[\"WGS 84 / UTM zone 10ON\",\n BASEGEOGCRS[\"WGS 84\",\n DATUM[\
— "World Geodetic System 1984\",\n ELLIPSOID[\"WGS 84\",6378137,298.257223563,
< \n LENGTHUNIT[\ "metre\",1]]1],\n PRIMEM[\"Greenwich\",®, \n o
N ANGLEUNIT[\"degree\",0.0174532925199433]], \n ID[\"EPSG\",4326]],\n o
—CONVERSION[\"UTM zone 10N\", \n METHOD[\ "Transverse Mercator\", \n ID[\
— "EPSG\",9807]],\n PARAMETER[\"Latitude of natural origin\",0,\n o

< ANGLEUNIT[\ "degree\",0.0174532925199433], \n ID[\"EPSG\",8801]],\n o
~PARAMETER[\"Longitude of natural origin\",-123,\n ANGLEUNIT[\ "degree\", 0.
—0174532925199433],\n ID[\"EPSG\",8802]],\n PARAMETER[\"Scale factor,
—at natural origin\",0.9996, \n SCALEUNIT[\"unity\", 1], \n ID[\

— "EPSG\",8805]],\n PARAMETER[\"False easting\", 500000, \n LENGTHUNIT[\
< "metre\",1],\n ID[\"EPSG\",8806]],\n PARAMETER[\"False northing\",0,\
—n LENGTHUNIT[\ "metre\",1],\n ID[\"EPSG\",8807]]],\n o
—CS[Cartesian,2],\n AXIS[\"(E)\",east,\n ORDER[1],\n o

< LENGTHUNIT[\ "metre\",1]],\n AXIS[\"(N)\",north,\n ORDER[2],\n o
. LENGTHUNIT[\ "metre\",1]],\n USAGE[\n SCOPE[\"Navigation and medium.,
—accuracy spatial referencing.\"],\n AREA[\"Between 126°W and 120°W, northern.

—hemisphere between equator and 84°N, onshore and offshore. Canada - British Columbia.,
- (BC); Northwest Territories (NWT); Nunavut; Yukon. United States (USA) - Alaska (AK).\
<~ "],\n BBOX[0,-126,84,-120]],\n ID[\"EPSG\",6 32610]]"

# Number of cells, rows, columns
ncell (b2)

## [1] 1863765

dim(b2)

## [1] 1245 1497 1

# spatial resolution
res(b2)
## [1] 30 30

# Number of layers (bands in remote sensing jargon)
nlyr(b2)
## [1] 1

(continues on next page)
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# Do the bands have the same extent, number of rows and columns, projection, resolution,.
—and origin

compareGeom(b2,b3)

## [1] TRUE

You can create a SpatRaster with multiple layers from the existing SpatRaster (single layer) objects.

s <- c(b5, b4, b3)

# Check the properties of the multi-band image
s

## class

## dimensions
## resolution
## extent

: SpatRaster

: 1245, 1497, 3 (nrow, ncol, nlyr)

: 30, 30 (x, y)

: 594090, 639000, 4190190, 4227540 (xmin, xmax, ymin, ymax)

## coord. ref. : WGS 84 / UTM zone 10N (EPSG:32610)

## sources : LCO8_044034_20170614_B5.tif

## LCO8_044034_20170614_B4.tif

## LCO8_044034_20170614_B3.tif

## names : LCO8_04403~0170614_B5, LCO8_04403~0170614_B4, LCO8_04403~0170614_B3
## min values 0.0008457669, 0.02084067, 0.04259216
## max values 1.0124315023, 0.78617686, 0.69246972

You can also create the multi-layer SpatRaster using the filenames.

# first create a list of raster layers to use

filenames <- paste®('data/rs/LC0O8_044034_20170614_B', 1:11, ".tif")
filenames

## [1] "data/rs/LCO8_044034_20170614_B1.
## [2] "data/rs/LCO8_044034_20170614_B2.
## [3] "data/rs/LCO8_044034_20170614_B3.
## [4] "data/rs/LC0O8_044034_20170614_B4.
## [5] "data/rs/LCO8_044034_20170614_B5.
## [6] "data/rs/LCO8_044034_20170614_B6.
## [7] "data/rs/LC0O8_044034_20170614_B7.
## [8] "data/rs/LCO8_044034_20170614_B8.tif"
## [9] "data/rs/LCO8_044034_20170614_B9.tif"
## [10] "data/rs/LCO8_044034_20170614_B10.tif"
## [11] "data/rs/LCO8_044034_20170614_B11.tif"

tif"
tif"
tif"
tif"
tif"
tif"
tif"

landsat <- rast(filenames)

landsat

##
##
##
##
##
##
##
##
##
##

class
dimensions
resolution
extent

coord. ref.

sources

names

—~~14_B6,

: SpatRaster
: 1245,
: 30, 30 (x, y)
: 594090, 639000, 4190190, 4227540 (xmin, xmax, ymin,
: WGS 84 / UTM zone 10N (EPSG:32610)

: LCO8_044034_20170614_B1.tif

1497, 11 (nrow, ncol, nlyr)

LCO8_044034_20170614_B2.tif
LCO8_044034_20170614_B3.tif
. and 8 more source(s)

: LCO8_~14_B1, LCO8_~14_B2, LCO8_~14_B3, LCOS_~14_B4,

ymax)

LCO8_~14_B5,

LCOS8_

(continues on next page)
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(continued from previous page)

## min values
007872183,
## max values
043204546,

0.09641791, 0.0748399, 0.04259216,

0.73462820, 0.7177562, 0.69246972,

0.02084067,

0.78617686,

0.0008457669, -0.

1.0124315023, 1.

Above we created a SpatRaster with 11 layers. The layers represent reflection intensity in the following wavelengths:
Ultra Blue, Blue, Green, Red, Near Infrared (NIR), Shortwave Infrared (SWIR) 1, Shortwave Infrared (SWIR) 2,
Panchromatic, Cirrus, Thermal Infrared (TIRS) 1, Thermal Infrared (TIRS) 2.

2.3 Single band and composite maps

You can plot individual layers of a multi-spectral image.

par(mfrow = c(2,

plot(b2, main =
plot(b3, main =
plot(b4, main =
plot(b5, main =

2))

"Blue", col = gray(0:100 / 100))
"Green", col = gray(0:100 / 100))
"Red", col = gray(0:100 / 100))
"NIR", col = gray(0:100 / 100))

AZEE000

420000 4215000

4185000

Q.50
0.40
030
020
Q.10

Blue

AZEE000

420000 4215000

4185000

== n] E10000 SO0 E30000 Ears5

AEEE000

4B 4215000

4185000

Q.70
060
Q.50
0.40
a3
020
Q.10

Red

AEEE000

4215000

420

4185000

== n] E10000 SO0 E30000 Ears5

Green

060
Q.50
0.40
030

020

Q.10

E10000 SO0 E30000

E10000 SO0 E30000

The legends of the maps created above can range between 0 and 1. Notice the difference in shading and range of legends
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between the different bands. This is because different surface features reflect the incident solar radiation differently.
Each layer represent how much incident solar radiation is reflected for a particular wavelength range. For example,
vegetation reflects more energy in NIR than other wavelengths and thus appears brighter. In contrast, water absorbs
most of the energy in the NIR wavelength and it appears dark.

We do not gain that much information from these grey-scale plots; they are often combined into a “‘composite” to create
more interesting plots. You can learn more about color composites in remote sensing here and also in the section below.

To make a “true (or natural) color” image, that is, something that looks like a normal photograph (vegetation in green,
water blue etc), we need bands in the red, green and blue regions. For this Landsat image, band 4 (red), 3 (green), and
2 (blue) can be used. With plotRGB we can combine them into a single composite image. Note that use of strecth
= "1lin" (otherwise the image will be pitch-dark).

landsatRGB <- c(b4, b3, b2)
plotRGB(landsatRGB, stretch = "lin")

The true-color composite reveals much more about the landscape than the earlier gray images. Another popular image
visualization method in remote sensing is known “false color”” image in which NIR, red, and green bands are combined.

2.3. Single band and composite maps 9



https://crisp.nus.edu.sg/~research/tutorial/opt_int.htm
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This representation is popular as it makes it easy to see the vegetation (in red).

landsatFCC <- c(b5, b4, b3)
plotRGB(landsatFCC, stretch="1in")

Question 1: Now use the plotRGB function with the multi-band (11 layers) “landsat " SpatRaster to create a true and
false color composite (hint remember the position of the bands).

10 Chapter 2. Exploration
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2.4 Subset and rename bands

You can select specific layers (bands) using subset function, or via indexing.

# select first 3 bands only
landsatsubl <- subset(landsat, 1:3)
# same

landsatsub2 <- landsat[[1:3]]

# Number of bands in the original and new data
nlyr(landsat)

## [1] 11

nlyr(landsatsubl)

## [1] 3

nlyr(landsatsub2)

## [1] 3

We won’t use the last four bands in 1andsat. You can remove those by selecting the ones we want.

landsat <- subset(landsat, 1:7)

For clarity, it is wuseful to set the names of the bands. (source)[https://www.usgs.gov/faqs/
what-are-band-designations-landsat-satellites ?qt-news_science_products=0#qt-news_science_products]

names (landsat)

## [1] "LCO8_044034_20170614_B1" "LCO8_044034_20170614_B2"

## [3] "LCO8_044034_20170614_B3" "LCO8_044034_20170614_B4"

## [5] "LCOB_044034_20170614_B5" "LCO8_044034_20170614_B6"

## [7] "LCO8_044034_20170614_B7"

names(landsat) <- c('ultra-blue', 'blue', 'green', 'red', 'NIR', 'SWIR1', 'SWIR2')
names (landsat)

## [1] "ultra-blue" "blue" "green" "red" "NIR"

## [6] "SWIR1" "SWIR2"

2.5 Spatial subset or crop

Spatial subsetting can be used to limit analysis to a geographic subset of the image. Spatial subsets can be created with
the crop function, using a SpatExtent object, or another spatial object from which an Extent can be extracted.

ext(landsat)
## SpatExtent : 594090, 639000, 4190190, 4227540 (xmin, xmax, ymin, ymax)
e <- ext(624387, 635752, 4200047, 4210939)

# crop landsat by the extent
landsatcrop <- crop(landsat, e)

Question 2: Use the “landsatcrop " image to plot a true and false color composite

2.4. Subset and rename bands 11



https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites?qt-news_science_products=0#qt-news_science_products
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2.6 Saving results to disk

At this stage we may want to save the raster to disk with writeRaster. Multiple file types are supported. We will use
the commonly used GeoTiff format.

writeRaster(landsatcrop, filename="cropped-landsat.tif", overwrite=TRUE)

Note: Check for package documentation (help (writeRaster)) for additional helpful arguments that can be added.

2.7 Relation between bands

A scatterplot matrix can be helpful in exploring relationships between raster layers. This can be done with the pairs

function.

A plot of reflection in the ultra-blue wavelength against reflection in the blue wavelength.

pairs(landsatcrop[[1:2]], main = "Ultra-blue versus Blue")

02 03 04

0.1

=)

Ultra-blue versus Blue

0.2 03
I I I

0.4
I

ultra.blue

0.99

blue

T 1T 1T 1T 11
0 020 020 0.40

0.25 0.40

0.10

A plot of reflection in the red wavelength against reflection in the NIR wavelength.

pairs(landsatcrop[[4:5]], main

"Red versus NIR")

12
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Red versus NIR

red

0.3

0.1

5 NIR

04 08

0.2

0.0

The first plot reveals high correlations between the blue wavelength regions. Because of the high correlation, we can
just use one of the blue bands without losing much information.

This distribution of points in second plot (between NIR and red) is unique due to its triangular shape. Vegetation reflects
very highly in the NIR range than red and creates the upper corner close to NIR (y) axis. Water absorbs energy from
all the bands and occupies the location close to origin. The furthest corner is created due to highly reflecting surface
features like bright soil or concrete (see Baret et al)[http://www.ipgp.fr/~jacquemoud/publications/baret1 993a.pdfT].

2.8 Extract cell values

Often we want to get the values of raster cells (pixels in remote sensing jargon) for specific geographic locations or
area. The extract function is used to get raster values at the locations of other spatial data. You can use points, lines,
polygons or an Extent (rectangle) object. You can also use cell numbers to extract values. When using points, extract
returns the values of a SpatRaster object for the cells in which a set of points fall.

# load the polygons with land use land cover information
samp <- readRDS('data/rs/lcsamples.rds")

# generate 50 point samples from the polygons

set.seed(555)

(continues on next page)
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(continued from previous page)

ptsamp <- spatSample(samp, 50, 'regular')

# We use the x-y coordinates to extract the spectral values for the locations
df <- extract(landsat, ptsamp)

# To see some of the reflectance values

head(df)

##  ID ultra-blue blue green red NIR SWIRI SWIRZ2
## 1 1 0.1152851 0.09450950 0.09054089 0.06332441 0.4896148 0.1536918 0.07551219
## 2 2 0.1158706 0.09381554 0.08429519 0.05584258 0.4386517 0.1711277 0.08882765
## 3 3 0.1151116 0.09260110 0.09442276 0.05775099 0.5586210 0.1705638 0.07067610
## 4 4 0.1100153 0.08713611 0.08986861 0.05057278 0.4605116 0.1765059 0.07436280
## 5 5 0.1109695 0.08767828 0.08394821 0.04983544 0.6520245 0.1484437 0.04799209
## 6 6 0.1070009 0.08368797 0.06970022 0.04556321 0.3409542 0.1594387 0.07312667

2.9 Spectral profiles

A plot of the spectrum (all bands) for pixels representing a certain earth surface features (e.g. water) is known as a
spectral profile. Such profiles demonstrate the differences in spectral properties of various earth surface features and
constitute the basis for image analysis. Spectral values can be extracted from any multispectral data set using extract
function. In the above example, we extracted values of Landsat data for the samples. These samples include: cropland,
water, fallow, built and open. First we compute the mean reflectance values for each class and each band.

ms <- aggregate(df[,-1], list(ptsamp$class), mean)

# instead of the first column, we use row names
rownames(ms) <- ms[,1]
ms <- ms[,-1]

ms
## ultra-blue blue green red NIR SWIR1
## built 0.1715777 0.16020858 0.15984533 0.17228251 0.22624379 0.21830656

## cropland 0.1123755 0.08990475 0.08546264 0.05381490 0.49006296 0.16329528
## fallow 0.1348246 0.11801761 0.10233108 0.10520815 0.15550623 0.23542800

## open 0.1396925 0.13829443 0.15342000 0.20654889 0.34112771 0.35808941
## water 0.1342292 0.11744489 0.10053341 0.07981103 0.04949535 0.03381014
## SWIRZ2

## built 0.18381969
## cropland 0.07174958
## fallow 0.21624273
## open 0.21559214
## water 0.02739490

Now we plot the mean spectra of these features.

# Create a vector of color for the land cover classes for use in plotting
mycolor <- c('darkred', 'yellow', 'burlywood', 'cyan', 'blue')

#transform ms from a data.frame to a matrix
ms <- as.matrix(ms)

(continues on next page)
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(continued from previous page)

# First create an empty plot
plot(®, ylim=c(0,0.6), xlim = c(1,7), type='n', xlab="Bands", ylab = "Reflectance")

# add the different classes
for (i in 1:nrow(ms)){
lines(ms[i,], type = "1", lwd = 3, 1ty = 1, col = mycolor[i])

}

# Title
title(main="Spectral Signatures", font.main = 2)

# Legend
legend("topleft"”, rownames(ms),
cex=0.8, col=mycolor, lty = 1, lwd =3, bty = "n")

Spectral Signatures
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The spectral signatures (profile) shows (dis)similarity in the reflectance of different features on the earth’s surface (or
above it). “Water’ shows relatively low reflection in all wavelengths, and ‘built’, ‘fallow’ and ‘open’ have relatively high
reflectance in the longer wavelengts.

2.9. Spectral profiles 15
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CHAPTER
THREE

BASIC MATHEMATICAL OPERATIONS

The terra package supports many mathematical operations. Math operations are generally performed per pixel (grid
cell). First we will do some basic arithmetic operations to combine bands. In the first example we write a custom math
function to calculate the Normalized Difference Vegetation Index (NDVI). Learn more about vegetation indices here
and NDVI.

We use the same Landsat data as in Chapter 2.

library(terra)

## terra 1.7.62

rfiles <- paste®('data/rs/LC08_044034_20170614_B', 1:11, ".tif")
landsat <- rast(rfiles)

landsatRGB <- landsat[[c(4,3,2)]]

landsatFCC <- landsat[[c(5,4,3)]]

3.1 Vegetation indices

Let’s define a general function for a ratio based (vegetation) index. In the function below, img is a muti-layer SpatRaster
object and i and k are the indices of the layers (layer numbers) used to compute the vegetation index.

vi <- function(img, k, i) {
bk <- img[[k]]
bi <- img[[i]]
vi <- (bk - bi) / (bk + bi)
return(vi)

# For Landsat NIR = 5, red = 4.
ndvi <- vi(landsat, 5, 4)
plot(ndvi, col=rev(terrain.colors(10)), main = "NDVI")

17
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NDVI

41495000 2205000

et 5 E10000 0000 E30000

You can see the variation in greenness from the plot.

Below is an alternative way to accomplish this. First write a general function that can compute 2-layer NDVI type
indices.

vi2 <- function(x, y) {
-/ &E+y
}

And use that function as an argument in lapp

nir <- landsat[[5]]
red <- landsat[[4]]
ndvi2 <- lapp(c(nir, red), fun = vi2)

# or in one line
#ndvi2 <- lapp(landsat[[5:4]], fun=vi2)

plot(ndvi2, col=rev(terrain.colors(10)), main="Landsat-NDVI")
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et 5 E10000 0000 E30000

Question 1: Adapt the code shown above to compute indices to identify i) water and ii) built-up. Hint: Use the spectral
profile plot to find the bands having maximum and minimum reflectance for these two classes. Or read about ithere..

3.2 Histogram

We can explore the distribution of values contained within our raster using hist to produces a histogram. Histograms
are often useful in identifying outliers and bad data values in our raster data.

hist(ndvi, main = "NDVI values", xlab = "NDVI", ylab= "Frequency",
col = "wheat", xlim = c(-0.5, 1), breaks = 30, xaxt = "n")
## Warning: [hist] a sample o0f54% of the cells was used

axis(side=1, at = seq(-0.6, 1, 0.2), labels = seq(-0.6, 1, 0.2))

3.2. Histogram 19
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We will refer to this histogram for the following sub-section on thresholding.

Question 2: Make histograms of the values the vegetation indices developed in question 1.

3.3 Thresholding

We can apply basic rules to get an estimate of spatial extent of different Earth surface features. Note that NDVI values
are standardized and ranges between -1 to +1. Higher values indicate more green cover.

Cells with NDVI values greater than 0.4 are definitely vegetation. The following operation masks all cells that are
perhaps not vegetation (NDVI < 0.4).

veg <- clamp(ndvi, 0.4, values=FALSE)
plot(veg, main="Vegetation")
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Let’s map the area that corresponds to the peak between 0.25 and 0.3 in the NDVI histogram.

0.20

m <- c(-Inf, 0.25, NA, 0.25, 0.3, 1, 0.3, Inf, NA)
rcl <- matrix(m, ncol = 3, byrow = TRUE)

land <- classify(ndvi, rcl)

plot(land, main = 'What is it?'")

3.3. Thresholding
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What is It'?
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You can plot 1and on top of the 1andsatRGB raster to find out.

plotRGB(landsatRGB, r=1, g=2, b=3,
plot(land, add=TRUE, legend=FALSE)

axes=TRUE,

stretch="1in")

22
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You can also create classes for different intensity of vegetation.

m <- c(-1,0.25, 0.3, 0.4, 0.5, 1)
vegc <- classify(ndvi, m)
plot(vegc, col = rev(terrain.colors(4)), main =

'NDVI based thresholding')

3.3. Thresholding
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NDVI based thresholding
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Question 3: Is it possible to find water using thresholding of NDVI or any other indices?

3.4 Principal component analysis

Multi-spectral data are sometimes transformed to helps to reduce the dimensionality and noise in the data. The principal
components transform is a generic data reduction method that can be used to create a few uncorrelated bands from a
larger set of correlated bands.

You can calculate the same number of principal components as the number of input bands. The first principal component
(PC) explains the largest percentage of variance and other PCs explain additional the variance in decreasing order.

set.seed(1)
sr <- spatSample(landsat, 10000)
plot(sr[,c(4,5)], main = "NIR-Red plot")
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This is known as vegetation and soil-line plot (Same as the scatter plot in earlier section).

pca <- prcomp(sr, scale = TRUE)

pca

##
##
##
##
##
##
##
##
##
##
##
##
##

Standard deviations (1,

[1] 2.53668771 1.40078059 1.08362915 0.92501695 0.54958227 0.41473655

., p=11):

[7] 0.27030406 0.12220817 0.08661844

Rotation (n x k) = (11 x 11):

LCO8_044034_20170614_B1
LCO8_044034_20170614_B2
LCOS8_044034_20170614_B3
LCOS8_044034_20170614_B4
LCO8_044034_20170614_B5
LCOE_044034_20170614_B6
LCO8_044034_20170614_B7

=R — I — R N R N~}

PC1

.2937880 0
.3357803 0
.3612145 0
.3676650 0
.1591361 -0
.3472817 -0
.3499019 -0

0.04763013 0.03609876

PC2
.3642123
.3382035
.2650391
.1641879
. 1852694
.2134275
.2367876

PC3

.28481332
.15857739
.07275822
. 10447910
.71300561
.22853576
.11725588

= IR NN}

PC4

.06676012
.03635911
.04141597
.03578747
.32594984
.15831890
.06147126

(continues on next page)

3.4. Principal component analysis
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(continued from previous page)

## LCO8_044034_20170614_B8 0.3496278 0.1964745 0.08489385 0.02433066

## LCO8_044034_20170614_B9 0.1325628 -0.1117693 0.33293128 -0.92447725

## LCOS_044034_20170614_B10 0.2534434 -0.4831768 -0.30276292 -0.02013211

## LCO8_044034_20170614_B11 0.2507597 -0.4850418 -0.30570381 -0.02197088

## PC5 PC6 PC7 PC8
## LCO8_044034_20170614_B1 -0.49633695 -0.17556592 -0.23610914 0.219084848
## LCO8_044034_20170614_B2 -0.22593198 -0.09672106 0.06516109 0.191800572
## LCO8_044034_20170614_B3 -0.06775249 0.01134076 0.29589321 -0.502516608
## LCOS_044034_20170614_B4 0.33203379 0.06966965 0.60728435 0.005032259
## LCO8_044034_20170614_B5 -0.51515049 0.06796061 -0.07734807 -0.094468368
## LCOB_044034_20170614_B6  0.28840709 -0.33603872 -0.01251499 0.639691364
## LCO8_044034_20170614_B7 0.24635064 -0.53401272 -0.39446741 -0.489769588
## LCO8_044034_20170614_B8 0.33312920 0.65599341 -0.53808102 0.022845490
## LCOS_044034_20170614_B9 -0.04429935 -0.04329372 -0.02425017 -0.001980250
## LCO8_044034_20170614_B10 -0.16429483 0.24521079 0.13682816 0.057604000
## LCOB_044034_20170614_B11 -0.19644322 0.24453814 0.11434312 -0.028609160
## PC9 PC10 PC11

## LCO8_044034_20170614_B1 -0.1023702943 0.5365796233 0.127065695

## LCOS_044034_20170614_B2 -0.1218742739 -0.7691469170 -0.196283512

## LCO8_044034_20170614_B3 0.6640135096 0.0551533999 0.059318851

## LCO8_044034_20170614_B4 -0.5347992170 0.2350928333 0.021665820

## LCO8_044034_20170614_B5 -0.1995974299 -0.0311387747 0.004029261

## LCO8_044034_20170614_B6  0.3828069102 0.0639560393 -0.021372642

## LCOS_044034_20170614_B7 -0.2438645765 -0.0551104634 0.011338146

## LCO8_044034_20170614_B8  0.0005337710 0.0005066492 -0.001773935

## LCO8_044034_20170614_B9 -0.0009025984 -0.0006276713 0.001823281

## LCO8_044034_20170614_B10 0.0039273450 -0.1709760476 0.686896213

## LCO8_044034_20170614_B11 0.0433142125 0.1576520508 -0.684766019
screeplot(pca)
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pca

variances

We use a function to restrict prediction to the first two principal components

pca_predict2 <- function(model, data, ...) {
predict(model, data, ...)[,1:2]

}

pci <- predict(landsat, pca, fun=pca_predict2)

plot(pci)

3.4. Principal component analysis
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The first principal component highlights the boundaries between different land use classes. it is difficult to understand
what the second principal component is highlighting. Lets try thresholding again:

# quick look at the histogram of second component

hist <- pci[[2]]

m <- c(-Inf,-3,NA, -3,-2,0, -2,-1,1, -1,0,2, 0,1,3, 1,2,4, 2,6,5, 6,Inf,NA)
rcl <- matrix(m, ncol = 3, byrow = TRUE)

rcl

## [,1] [,2] [,3]

## [1,] -Inf -3 NA

## [2,] -3 -2 0
## [3,] -2 -1 1
## [4,] -1 2
## [5,] 0 1 3
## [6,] 1 4

5

## [7,] 2 6
## [8,] 6 Inf NA
pcClass <- classify(pci[[2]], rcl)

Now plot the results

par (mfrow=c(1,2))
plotRGB(landsatFCC, stretch = "lin", main="False Color", mar=c(3.1, 3.1, 2.1, 2.1))
plot(pcClass, main="PCA")
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To learn more about the information contained in the vegetation and soil line plots read this paper by Gitelson et al.
Details about PCA and an extension of PCA in remote sensing, Tasseled-cap Transformation.

3.4. Principal component analysis 29
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CHAPTER
FOUR

UNSUPERVISED CLASSIFICATION

In this chapter we explore unsupervised classification. Various unsupervised classification algorithms exist, and the
choice of algorithm affects the results. Here we use the k-means algorithm to illustrate the general principle.

For this example, we will follow the National Land Cover Database 2011 (NLCD 2011) classification scheme for a
subset of the Central Valley regions. We use cloud-free composite image from Landsat 5 with 6 bands.

library(terra)

## terra 1.7.62

landsat5 <- rast('data/rs/centralvalley-2011LT5.tif")

names (landsat5) <- c('blue', 'green', 'red', 'NIR', 'SWIR1', 'SWIR2')

Question 1: Make a 3-band False Color Composite plot of “landsat5 ™.

In unsupervised classification, we use the reflectance data, but we don’t supply any response data (that is, we do not
identify any pixel as belonging to a particular class). This may seem odd, but it can be useful when we don’t have much
prior knowledge of a study area. Or if you have broad knowledge of the distribution of land cover classes of interest,
but no specific ground data.

The algorithm groups pixels with similar spectral characteristics into groups.
Learn more about K-means and other unsupervised-supervised algorithms here.

We will perform unsupervised classification on a spatial subset of the ndvi layer. Here is yet another way to compute
ndvi. In this case we do not use a separate function, but we use a direct algebraic notation.

ndvi <- (landsat5[['NIR']] - landsat5[['red']]) / (landsat5[['NIR']] + landsat5[['red']])

We will do kmeans clustering of the ndvi data. First we use crop to make a spatial subset of the ndvi, to allow for
faster processing (you can select any SpatExtent using the draw function).

4.1 kmeans classification

# SpatExtent to crop ndvi layer
e <- ext(-121.807, -121.725, 38.004, 38.072)

# crop landsat by the extent

ndvi <- crop(ndvi, e)

ndvi

## class : SpatRaster

## dimensions : 252, 304, 1 (nrow, ncol, nlyr)
## resolution : 0.0002694946, 0.0002694946 (x, y)

(continues on next page)
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(continued from previous page)

## extent : -121.807, -121.725, 38.00413, 38.07204 (xmin, xmax, ymin, ymax)
## coord. ref. : lon/lat WGS 84 (EPSG:4326)

## source(s) : memory

## varname : centralvalley-2011LT5

## name : NIR

## min value : -0.3360085

## max value ;0 0.7756007

# convert the raster to a data.frme

nr <- as.data.frame(ndvi, cell=TRUE)

str(nr)

## 'data.frame': 76608 obs. of 2 variables:

## §$ cell: int 123456789 10...

## §$ NIR : num 0.245 0.236 0.272 0.277 0.277 ...

Please note that values (ndvi) converted the ndvi SpatRaster to an array (matrix). Now we will perform the kmeans
clustering on the matrix and inspect the output.

# It is important to set the seed generator because ‘kmeans' initiates the centers in.,
—random locations
set.seed(99)

# Create 10 clusters, allow 500 iterations, start with 5 random sets using "Lloyd".
—method.

# Do not use the first column (cell number).

kmncluster <- kmeans(ar[,-1], centers=10, iter.max = 500, nstart = 5, algorithm="Lloyd")

# kmeans returns an object of class "kmeans"

str(kmncluster)

## List of 9

## §$ cluster :int [1:76608] 4 4 3 3333444 ...

## § centers cnum [1:10, 1] 0.55425 0.00498 0.29997 0.20892 -0.20902 ...
## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:10] "1" "2" "3" "4" ..

## .. ..$ : NULL

## $ totss : num 6459

## §$ withinss cnum [1:10] 5.69 6.13 4.91 4.9 5.75 ...

## § tot.withinss: num 55.8

## § betweenss : num 6403

## $ size :int [1:10] 8932 4550 7156 6807 11672 8624 8736 5040 9893 5198
## $ iter : int 108

## § ifault : NULL

## - attr(*, "class'")= chr "kmeans"

kmeans returns an object with 9 elements. The length of the cluster element within kmncluster is 76608 which
same as length of nr created from the ndvi. The cell values of kmncluster$cluster range between 1 to 10 cor-
responding to the input number of cluster we provided in the kmeans function. kmncluster$cluster indicates the
cluster label for corresponding pixel. We need to convert the kmncluster$cluster values back to a SpatRaster of
the same dimension as the ndvi.

# Use the ndvi object to set the cluster values to a new raster
knr <- rast(ndvi, nlyr=1)

(continues on next page)
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(continued from previous page)

knr[nr$cell] <- kmncluster$cluster

knr

##
##
##
##
##
##
##
##
##

class
dimensions
resolution
extent
coord. ref.
source(s)
varname
name

min value

## max value

: SpatRaster
: 252, 304, 1 (nrow, ncol, nlyr)
: 0.0002694946, 0.0002694946 (x, y)
: -121.807, -121.725, 38.00413, 38.07204 (xmin, xmax, ymin, ymax)
: lon/lat WGS 84 (EPSG:4326)
: memory
: centralvalley-2011LT5
: NIR
1
10

We can see that knr is a SpatRaster but we do not know which cluster (1-10) belongs to what land cover class (and if
it does belong to a class that we would recognize). You can find that out by plotting them side-by-side with a reference
layers and using unique color for each cluster.

# Define a color vector for 10 clusters (learn more about setting the color later)
mycolor <- c("#fef65b","#£f0000", "#daa520","#0000ff","#0000ff", "#00£f£f00", "#cbbeb5",

"#c3££5b", "#££7373", "#00££f00", "#808080")
par(mfrow = c(1,2))
plot(ndvi, col = rev(terrain.colors(10)), main = "Landsat-NDVI')

plot(knr, main = 'Unsupervised classification', col = mycolor, type="classes")
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While for other purposes it is usually better to define more classes (and possibly merge classes later), a simple classi-
fication like this one could be useful, e.g., merge cluster 4 and 5 to construct a water mask for the year 2011.

You can change the colors in my mycolor. Learn more about selecting colors in R here and here.

Question 2:Plot a true-color image of ‘landsat5’ for the subset (extent ‘e’) and result of ‘kmeans’ clustering side-by-
side and make a table of land-use land-cover labels for the clusters (based on visual inspection). E.g. cluster 4 and 5
are water.

4.1. kmeans classification 33
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CHAPTER
FIVE

SUPERVISED CLASSIFICATION

Here we explore supervised classification for a simple land use land cover (LULC) mapping task. Various supervised
classification algorithms exist, and the choice of algorithm can affect the results. Here we explore two related algorithms
(CART and RandomForest).

In supervised classification, we have prior knowledge about some of the land-cover types through, for example, field-
work, reference spatial data or interpretation of high resolution imagery (such as available on Google maps). Specific
sites in the study area that represent homogeneous examples of these known land-cover types are identified. These areas
are commonly referred to as training sites because the spectral properties of these sites are used to train the classification
algorithm.

The following examples uses a Classification and Regression Trees (CART) classifier (Breiman et al. 1984) (further
reading to predict land use land cover classes in the study area.

We will take the following steps:
* Create sample sites used for classification
 Extract cell values from Landsat data for the sample sites
¢ Train the classifier using training samples
¢ Classify the Landsat data using the trained model

 Evaluate the accuracy of the model

5.1 Landsat data to classify

Here is our Landsat data.

library(terra)
## terra 1.7.62

# We read the 6 bands from the Landsat image we previously used
raslist <- paste®('data/rs/LC08_044034_20170614_B', 2:7, ".tif")
landsat <- rast(raslist)

names(landsat) <- c('blue', 'green', 'red', 'NIR', 'SWIR1', 'SWIR2'")
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5.2 Reference data

Training and/or validation data can come from a variety of sources. In this example, we use some training polygons
we have already collected from other sources. We have already used this for making the spectral plots.There are 5
distinct classes — built,cropland,fallow,open and, water and we hope to find the pixels under this categroies based on
our knowledge of training sites.

# load polygons with land use land cover information
samp <- readRDS("data/rs/lcsamples.rds")

# check the distribution of the polygons
plot(samp)
text(samp, samp$class)
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Next we generate random points within each polygons.

set.seed(1)

# generate point samples from the polygons
ptsamp <- spatSample(samp, 200, method="random")
plot(ptsamp, "class™)
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Alternatively, we can generate the training and validation sample sites using a reference land use land cover data. For
example, the National Land Cover Database 2011 (NLCD 2011) is a land cover product for the United States. NLCD
is a 30-m Landsat-based land cover database spanning 4 epochs (1992, 2001, 2006 and 2011). NLCD 2011 is based
primarily on a decision-tree classification of circa 2011 Landsat data.

Detailes of the class mapped in NCLD 2011 can be found here (here)[https://www.mrlc.gov/nled11_leg.php]. It has
two pairs of class values and names that correspond to the levels of land use and land cover classification system. These
levels usually represent the level of complexity, level I being the simplest with broad land use land cover categories.
Read this report by Anderson et al to learn more about this land use and land cover classification system.

nlcd <- rast('data/rs/nlcd-L1.tif")
names(nlcd) <- c("nlcd2001", "nlcd2011™)
nlcd2011 <- nlcd[[2]]

# assign class names as categories (levels)

nlcdclass <- c("Water", "Developed", "Barren", "Forest", "Shrubland", "Herbaceous",
—"Cultivated", "Wetlands™)

classdf <- data.frame(value = <(1,2,3,4,5,7,8,9), names = nlcdclass)
levels(nlcd2011) <- classdf

# colors (as hexidecimal codes)
classcolor <- c("#5475A8", "#B50000", "#D2CDCO", "#38814E", "#AF963C", "#D1D182", "
—#FBF65D", "#C8EG6F8")

# plot the locations on top of the original nlcd raster
plot(nlcd2011, col=classcolor)

ptlonlat <- project(ptsamp, crs(nlcd2011))
points(ptlonlat)
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B Water
B Ceveloped
O Barren
B Forest
B Shrubland
O Herbacsous
O Cultivated
O Wetlands
Generate sample sites from the NLCD SpatRaster
# Sampling
samp2011 <- spatSample(nlcd2011, size = 200, method="regular™)
# Number of samples in each class
table(samp2011[,1])
##
## Water Developed Barren Forest Shrubland Herbaceous Cultivated
## 19 29 1 6 3 35 107
##  Wetlands
## 16

5.3 Extract reflectance values for the training sites

Once we have the training sites, we can extract the cell values from each layer in 1andsat. These values will be the
predictor variables and “class” from ptsamp will be the response variable.

# extract the reflectance values for the locations
df <- extract(landsat, ptsamp, ID=FALSE)

# Quick check for the extracted values

head(df)

## blue green red NIR SWIRI SWIR2
## 1 0.09797934 0.08290726 0.05811966 0.01958285 0.006245691 0.003816809

(continues on next page)
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## 2 0.11986095 0.09904197 0.07978442 0.05723051 0.040965684 0.033939276
## 3 0.12838373 0.13727517 0.18810819 0.31336907 0.315103978 0.180648044
## 4 0.15295446 0.18123358 0.25232175 0.40375817 0.401546150 0.237791821
## 5 0.13992092 0.14987499 0.19207680 0.28279120 0.356763631 0.232044920
## 6 0.12341753 0.10114556 0.08288557 0.06377982 0.046972826 0.038883783

# combine lulc class information with extracted values
sampdata <- data.frame(class = ptsamp$class, df)

We often find classnames are provided as string labels (e.g. water, crop, vegetation) that need to be ‘relabelled’ to
integer or factors if only string labels are supplied before using them as response variable in the classification. There
are several approaches that could be used to convert these classes to integer codes. We can make a function that will
reclassify the character strings representing land cover classes into integers based on the existing factor levels.

5.4 Train the classifier

Now we will train the classification algorithm using sampdata dataset.

library(rpart)

# Train the model
cartmodel <- rpart(as.factor(class)~., data = sampdata, method = 'class', minsplit = 5)

One of the primary reasons behind choosing cart model is to have a closer look at the classification model. Unlike
other models, cart provides very simple way of inspecting and plotting the model structure.

# print trained model

print(cartmodel)

## n= 200

##

## node), split, n, loss, yval, (yprob)
## * denotes terminal node

##

## 1) root 200 122 water (0.055 0.12 0.19 0.24 0.39)

## 2) NIR>=0.08455543 122 73 open (0.09 0.2 0.31 0.4 0)

## 4) SWIRI< 0.2957055 70 35 fallow (0.14 0.34 0.5 0.014 0)
## 8) blue< 0.09913956 24 O cropland (0 1 0 0 0) *

## 9) blue>=0.09913956 46 11 fallow (0.22 0 0.76 0.022 0)
## 18) blue>=0.1312463 10 0 built (1 0 60 0 0) *

## 19) blue< 0.1312463 36 1 fallow (0 0 0.97 0.028 0) *
## 5) SWIRI>=0.2957055 52 4 open (0.019 0 0.058 0.92 0)

## 10) blue< 0.1299668 13 3 open (0 0 0.23 0.77 0)

## 20) SWIR2>=0.2063899 3 0 fallow (0 0 1 0 0) *

## 21) SWIR2< 0.2063899 10 O open (0 0 0 1 0) *

## 11) blue>=0.1299668 39 1 open (0.026 0 0 0.97 0) *

## 3) NIR< 0.08455543 78 0 water (0 0 0 0 1) *

# Plot the trained classification tree
plot(cartmodel, uniform=TRUE, main="Classification Tree")
text(cartmodel, cex = 1)
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Classification Tree

MIF==0.08456
|

WIR14 0.2957

water

Dlue= 0.09914 blueq 0.13

blug==0.1312 WIR2=£0.2064
apland apen

Firilt Tallovw fallovw apen

See ?rpart.control to set different parameters for building the model.

You can print/plot more about the cartmodel created in the previous example. E.g. you can use plotcp(cartmodel)
to learn about the cost-complexity (cp argument in rpart).

5.5 Classify

Now that we have our trained classification model (cartmodel), we can use it to make predictions, that is, to classify
all cells in the 1landsat5 SpatRaster.

Important The layer names in the SpatRaster should exactly match those that were used to train the model. This will
be the case if the same SpatRaster object was used (via extract) to obtain the values to fit the model. Otherwise you
need to specify the matching names.

classified <- predict(landsat, cartmodel, na.rm = TRUE)
classified

(continues on next page)
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## class : SpatRaster

## dimensions : 1245, 1497, 5 (nrow, ncol, nlyr)

## resolution : 30, 30 (x, y)

## extent : 594090, 639000, 4190190, 4227540 (xmin, xmax, ymin, ymax)
## coord. ref. : WGS 84 / UTM zone 10N (EPSG:32610)

## source(s) : memory

## names : built, cropland, fallow, open, water

## min values 0, 0, 0, 0, 0

## max values 1, 1, 1, 1, 1

plot(classified)
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Observe that there are 5 layers in the classified object, each of the layer representing the probability of a particular
LULC class. Below, we make a SpatRaster that shows, for each grid cell, the LULC class with the highest probability.

lulc <- which.max(classified)
lulc

##
##
##
##
##
##
##
##
##

class
dimensions
resolution
extent

coord. ref.

source(s)
name

min value
max value

: SpatRaster
1245,
: 30, 30 (x, y)
: 594090, 639000, 4190190, 4227540 (xmin, xmax, ymin, ymax)
: WGS 84 / UTM zone 10N (EPSG:32610)

1497, 1 (nrow, ncol, nlyr)

! memory

: which.max
1
5

To make a nice map, we make the raster categorical, using levels<-; and we provide custom colors.

cls <- c("built

cropland”,"fallow",

open","water")

df <- data.frame(id = 1:5, class=cls)

(continues on next page)
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levels(lulc) <- df

lulc

## class : SpatRaster

## dimensions : 1245, 1497, 1 (nrow, ncol, nlyr)

## resolution : 30, 30 (x, y)

## extent : 594090, 639000, 4190190, 4227540 (xmin, xmax, ymin, ymax)
## coord. ref. : WGS 84 / UTM zone 10N (EPSG:32610)

## source(s) . memory

## categories : class

## name : class

## min value : built

## max value : water

mycolor <- c('darkred", "yellow", "burlywood", "cyan", "blue")

plot(lulc, col=mycolor)
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If you are not satisfied with the results, you can select more samples and use additional predictor variables to see if you
can improve the classification. The choice of classifier (algorithm) also plays an important role. Next we show how to
test the performance the classification model.
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5.6 Model evaluation

This section discusses how to assess the accuracy of the model to get an idea of how accurate the classified map might
be. Two widely used measures in remote sensing are “overall accuracy” and “kappa”. You can perform the accuracy
assessment using the independent samples.

To evaluate any model, you can use k-fold cross-validation (you can also do single-fold). In this technique the data used
to fit the model is split into k groups (typically 5 groups). In turn, one of the groups will be used for model testing,
while the rest of the data is used for model training (fitting).

set.seed(99)

# number of folds

k <- 5

j <- sample(rep(l:k, each = round(nrow(sampdata))/k))
table(j)

##

## 1 2 3 4 5

## 40 40 40 40 40

Now we train and test the model five times, each time computing the predictions and storing that with the actual values
in a list. Later we use the list to compute the final accuarcy.

x <- list(Q)

for (k in 1:5) {
train <- sampdatal[j!= k, ]
test <- sampdatal[j == k, ]
cart <- rpart(as.factor(class)~., data=train, method = 'class',
minsplit = 5)
pclass <- predict(cart, test, na.rm = TRUE)
# assign class to maximum probablity
pc <- apply(pclass, 1, which.max)
# use labels instead of numbers
pc <- colnames(pclass) [pc]
# create a data.frame using the reference and prediction
x[[k]] <- cbind(test$class, pc)

Now combine the five list elements into a single data.frame, using do.call and compute a confusion matrix.

y <- do.call(rbind, x)
y <- data.frame(y)
colnames(y) <- c('observed', 'predicted')

# confusion matrix
conmat <- table(y)

print (conmat)

## predicted

## observed built cropland fallow open water
## built 8 0 1 2 0
##  cropland 0 24 0 0 0
##  fallow 2 0 33 3 0

(continues on next page)
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## open 0 0 2 47 0
## water 0 0 0 0 78

Question 1: Comment on the miss-classification between different classes.
Question 2:Can you think of ways to to improve the accuracy.
Compute the overall accuracy and the “kappa” statistic.

Overall accuracy:

# number of total cases/samples
n <- sum(conmat)

n

## [1] 200

# number of correctly classified cases per class
diag <- diag(conmat)

# Overall Accuracy
OA <- sum(diag) / n
0A

## [1] 0.95

Kappa:

# observed (true) cases per class
rowsums <- apply(conmat, 1, sum)
p <- rowsums / n

# predicted cases per class
colsums <- apply(conmat, 2, sum)
g <- colsums / n

expAccuracy <- sum(p*q)

kappa <- (OA - expAccuracy) / (1 - expAccuracy)
kappa

## [1] 0.9317732

Producer and user accuracy

# Producer accuracy
PA <- diag / colsums

# User accuracy
UA <- diag / rowsums

outAcc <- data.frame(producerAccuracy = PA, userAccuracy = UA)
outAcc

#i# producerAccuracy userAccuracy
## built 0.8000000 0.7272727
## cropland 1.0000000 1.0000000
## fallow 0.9166667 0.8684211

(continues on next page)
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## open 0.9038462 0.9591837
## water 1.0000000 1.0000000

Question 3:Perform the classification using Random Forest classifiers from the *‘randomForest " package
Question 4:Plot the results of rpart and Random Forest classifier side-by-side.

Question 5 (optional):Repeat the steps for other years using Random Forest. For example you can use the cloud-free
composite image data/centralvalley-2001LE7.tif. This datais collected by the Landsat 7 platform. You can use
the National Land Cover Database 2001 (NLCD 2001) subset of the California Central Valley for generating training
sites.

Question 6 (optional):We have trained the classifiers using unequal samples for each class. Investigate the effect of
sample size on classification. Repeat the steps with different subsets, e.g. a sample size of 100, 50, 25 per class, and
compare the results. Use the same holdout samples for model evaluation.
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